Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 55(5): 871-879, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106072

RESUMEN

Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.


Asunto(s)
Neoplasias , Semen , Masculino , Humanos , Adulto , Mutación/genética , Neoplasias/genética , Neoplasias/diagnóstico , Análisis de Secuencia de ADN , ADN , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Nat Biomed Eng ; 6(3): 257-266, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35301450

RESUMEN

Assaying for large numbers of low-frequency mutations requires sequencing at extremely high depth and accuracy. Increasing sequencing depth aids the detection of low-frequency mutations yet limits the number of loci that can be simultaneously probed. Here we report a method for the accurate tracking of thousands of distinct mutations that requires substantially fewer reads per locus than conventional hybrid-capture duplex sequencing. The method, which we named MAESTRO (for minor-allele-enriched sequencing through recognition oligonucleotides), combines massively parallel mutation enrichment with duplex sequencing to track up to 10,000 low-frequency mutations, with up to 100-fold fewer reads per locus. We show that MAESTRO can be used to test for chimaerism by tracking donor-exclusive single-nucleotide polymorphisms in sheared genomic DNA from human cell lines, to validate whole-exome sequencing and whole-genome sequencing for the detection of mutations in breast-tumour samples from 16 patients, and to monitor the patients for minimal residual disease via the analysis of cell-free DNA from liquid biopsies. MAESTRO improves the breadth, depth, accuracy and efficiency of mutation testing by sequencing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos
3.
Nucleic Acids Res ; 50(1): e1, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34591958

RESUMEN

Accurate DNA sequencing is crucial in biomedicine. Underlying the most accurate methods is the assumption that a mutation is true if altered bases are present on both strands of the DNA duplex. We now show that this assumption can be wrong. We establish that current methods to prepare DNA for sequencing, via 'End Repair/dA-Tailing,' may substantially resynthesize strands, leading amplifiable lesions or alterations on one strand to become indiscernible from true mutations on both strands. Indeed, we discovered that 7-17% and 32-57% of interior 'duplex base pairs' from cell-free DNA and formalin-fixed tumor biopsies, respectively, could be resynthesized in vitro and potentially introduce false mutations. To address this, we present Duplex-Repair, and show that it limits interior duplex base pair resynthesis by 8- to 464-fold, rescues the impact of induced DNA damage, and affords up to 8.9-fold more accurate duplex sequencing. Our study uncovers a major Achilles' heel in sequencing and offers a solution to restore high accuracy.


Asunto(s)
Neoplasias de la Mama/genética , ADN/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Femenino , Humanos , Estructura Molecular
4.
Nucleic Acids Res ; 49(14): 7901-7908, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308470

RESUMEN

Mononucleotide microsatellites are clinically and forensically crucial DNA sequences due to their high mutability and abundance in the human genome. As a mutagenic intermediate of an indel in a microsatellite and a consequence of probe hybridization after such mutagenesis, a bulge with structural degeneracy sliding within a microsatellite is formed. Stability of such dynamic bulges, however, is still poorly understood despite their critical role in cancer genomics and neurological disease studies. In this paper, we have built a model that predicts the thermodynamics of a sliding bulge at a microsatellite. We first identified 40 common bulge states that can be assembled into any sliding bulges, and then characterized them with toehold exchange energy measurement and the partition function. Our model, which is the first to predict the free energy of sliding bulges with more than three repeats, can infer the stability penalty of a sliding bulge of any sequence and length with a median prediction error of 0.22 kcal/mol. Patterns from the prediction clearly explain landscapes of microsatellites observed in the literature, such as higher mutation rates of longer microsatellites and C/G microsatellites.


Asunto(s)
ADN/química , ADN/genética , Repeticiones de Microsatélite/genética , Conformación de Ácido Nucleico , Temperatura , Algoritmos , Secuencia de Bases , Genoma Humano/genética , Humanos , Mutación INDEL/genética , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Mutagénesis , Termodinámica
5.
Nat Commun ; 11(1): 5008, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024123

RESUMEN

The potential of DNA as an information storage medium is rapidly growing due to advances in DNA synthesis and sequencing. However, the chemical stability of DNA challenges the complete erasure of information encoded in DNA sequences. Here, we encode information in a DNA information solution, a mixture of true message- and false message-encoded oligonucleotides, and enables rapid and permanent erasure of information. True messages are differentiated by their hybridization to a "truth marker" oligonucleotide, and only true messages can be read; binding of the truth marker can be effectively randomized even with a brief exposure to the elevated temperature. We show 8 separate bitmap images can be stably encoded and read after storage at 25 °C for 65 days with an average of over 99% correct information recall, which extrapolates to a half-life of over 15 years at 25 °C. Heating to 95 °C for 5 minutes, however, permanently erases the message.


Asunto(s)
Almacenamiento y Recuperación de la Información/métodos , Hibridación de Ácido Nucleico , Secuencia de Bases , Hibridación de Ácido Nucleico/métodos , Oligonucleótidos/química , Pinturas , Soluciones , Temperatura , Factores de Tiempo
6.
Nucleic Acids Res ; 48(15): e89, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32544247

RESUMEN

Understanding the thermodynamics of DNA motifs is important for prediction and design of probes and primers, but melt curve analyses are low-throughput and produce inaccurate results for motifs such as bulges and mismatches. Here, we developed a new, accurate and high-throughput method for measuring DNA motif thermodynamics called TEEM (Toehold Exchange Energy Measurement). It is a refined framework of comparing two toehold exchange reactions, which are competitive strand displacement between oligonucleotides. In a single experiment, TEEM can measure over 1000 ΔG° values with standard error of roughly 0.05 kcal/mol.


Asunto(s)
ADN/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Oligonucleótidos/genética , Termodinámica , ADN/química , Humanos , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , Oligonucleótidos/química
7.
Nat Commun ; 7: 10319, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26782977

RESUMEN

DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C.


Asunto(s)
Oligonucleótidos/química , Catálisis , Conformación de Ácido Nucleico , Temperatura , Termodinámica
8.
Appl Microbiol Biotechnol ; 98(21): 8917-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25117545

RESUMEN

A major problem of long-chain fatty acid (LCFA) hydroxylation using Escherichia coli is that FadD (long-chain fatty acyl-CoA synthetase), which is necessary for exogenous LCFA transport, also initiates cellular consumption of LCFA. In this study, an effective method to prevent the cellular consumption of LCFA without impairing its transport is proposed. The main idea is that a heterologous enzyme which consumes LCFA can replace FadD in LCFA transport. For the model heterologous enzyme, CYP153A from Marinobacter aquaeolei, which converts palmitic acid into ω-hydroxy palmitic acid, was expressed in E. coli. When fadD was deleted from an E. coli strain, CYP153A indeed maintained the ability to transport LCFA. A disadvantage of fadD deletion mutant is the fact that FadD deficiency downregulates the transcription of fadL (outer membrane LCFA transporter) via FadR (fatty acid metabolism regulator protein), was solved by fadL overexpression from a plasmid. In addition, the overexpression of fadL was able to offset catabolite repression on fadL, allowing glucose to be used as the primary carbon source. In conclusion, the strain with fadD deletion and fadL overexpression showed 5.5-fold increase in productivity compared to the wild-type strain, converting 2.6 g/L (10.0 mM) of palmitic acid into 2.4 g/L (8.8 mM) of ω-hydroxy palmitic acid in a shake flask. This simple genetic manipulation can be applied to any LCFA hydroxylation using E. coli.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Coenzima A Ligasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Eliminación de Gen , Expresión Génica , Proteínas de la Membrana Bacteriana Externa/genética , Coenzima A Ligasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Ácidos Grasos/genética , Marinobacter/enzimología , Marinobacter/genética , Ingeniería Metabólica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...