Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 20(4): e2304393, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712098

RESUMEN

Healed defects on photocatalysts surface and their interaction with plasmonic nanoparticles (NPs) have attracted attention in H2 production process. In this study, surface oxygen vacancy (Vo ) defects are created on ZnO (Vo -ZnO) NPs by directly pyrolyzing zeolitic imidazolate framework. The surface defects on Vo -ZnO provide active sites for the diffusion of single Au atoms and as nucleation sites for the formation of Au NPs by the in situ photodeposition process. The electronically healed surface defects by single Au atoms help in the formation of a heterojunction between the ZnO and plasmonic Au NPs. The formed Au/Vo -Au:ZnO-4 heterojunction prolongs photoelectron lifetimes and increases donor charge density. Therefore, the optimized photocatalysts of Au/Vo -Au:ZnO-4 has 21.28 times higher H2 production rate than the pristine Vo -ZnO under UV-visible light in 0.35 m Na2 SO4 and 0.25 m Na2 SO3 . However in 0.35 m Na2 S and 0.25 m Na2 SO3 , the H2 production rate is 25.84 mmole h-1 g-1 . Furthermore, Au/Vo -Au:ZnO-4 shows visible light activity by generating hot carries via induced surface plasmonic effects. It has 48.58 times higher H2 production rate than pristine Vo -ZnO. Therefore, this study infers new insight for defect healing mediated preparation of Au/Vo -Au:ZnO heterojunction for efficient photocatalytic H2 production.

2.
J Mol Cell Cardiol ; 187: 15-25, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141532

RESUMEN

The metabolic switch from glycolysis to fatty acid oxidation in postnatal cardiomyocytes contributes to the loss of the cardiac regenerative potential of the mammalian heart. However, the mechanisms that regulate this metabolic switch remain unclear. The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) is a central signaling hub that regulates cellular metabolism and protein synthesis, yet its role during mammalian heart regeneration and postnatal metabolic maturation is undefined. Here, we use immunoblotting, rapamycin treatment, myocardial infarction, and global proteomics to define the role of mTORC1 in postnatal heart development and regeneration. Our results demonstrate that the activity of mTORC1 is dynamically regulated between the regenerating and the non-regenerating hearts. Acute inhibition of mTORC1 by rapamycin or everolimus reduces cardiomyocyte proliferation and inhibits neonatal heart regeneration following injury. Our quantitative proteomic analysis demonstrates that transient inhibition of mTORC1 during neonatal heart injury did not reduce protein synthesis, but rather shifts the cardiac proteome of the neonatal injured heart from glycolysis towards fatty acid oxidation. This indicates that mTORC1 inhibition following injury accelerates the postnatal metabolic switch, which promotes metabolic maturation and impedes cardiomyocyte proliferation and heart regeneration. Taken together, our results define an important role for mTORC1 in regulating postnatal cardiac metabolism and may represent a novel target to modulate cardiac metabolism and promote heart regeneration.


Asunto(s)
Miocitos Cardíacos , Proteómica , Animales , Miocitos Cardíacos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales Recién Nacidos , Corazón/fisiología , Sirolimus , Ácidos Grasos/metabolismo , Proliferación Celular , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961158

RESUMEN

Adult mammalian cardiomyocytes have limited proliferative potential, and after myocardial infarction (MI), injured cardiac tissue is replaced with fibrotic scar rather than with functioning myocardium. In contrast, the neonatal mouse heart possesses a regenerative capacity governed by cardiomyocyte proliferation; however, a metabolic switch from glycolysis to fatty acid oxidation during postnatal development results in loss of this regenerative capacity. Interestingly, a sarcomere isoform switch also takes place during postnatal development where slow skeletal troponin I (ssTnI) is replaced with cardiac troponin I (cTnI). In this study, we first employ integrated quantitative bottom-up and top-down proteomics to comprehensively define the proteomic and sarcomeric landscape during postnatal heart maturation. Utilizing a cardiomyocyte-specific ssTnI transgenic mouse model, we found that ssTnI overexpression increased cardiomyocyte proliferation and the cardiac regenerative capacity of the postnatal heart following MI compared to control mice by histological analysis. Our global proteomic analysis of ssTnI transgenic mice following MI reveals that ssTnI overexpression induces a significant shift in the cardiac proteomic landscape. This shift is characterized by an upregulation of key proteins involved in glycolytic metabolism. Collectively, our data suggest that the postnatal TnI isoform switch may play a role in the metabolic shift from glycolysis to fatty acid oxidation during postnatal maturation. This underscores the significance of a sarcomere-metabolism axis during cardiomyocyte proliferation and heart regeneration.

4.
iScience ; 26(10): 107709, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37674983

RESUMEN

Sympathetic innervation influences homeostasis, repair, and pathology in the cardiac ventricles; in contrast, parasympathetic innervation is considered to have minimal contribution and influence in the ventricles. Here, we use genetic models, whole-mount imaging, and three-dimensional modeling to define cardiac nerve architecture during development, disease, and regeneration. Our approach reveals that parasympathetic nerves extensively innervate the cardiac ventricles. Furthermore, we identify that parasympathetic and sympathetic axons develop synchronously and are bundled throughout the ventricles. We further investigate cardiac nerve remodeling in the regenerative neonatal and the non-regenerative postnatal mouse heart. Our results show that the regenerating myocardium undergoes a unique process of physiological reinnervation, where proper nerve distribution and architecture is reestablished, in stark contrast to the non-regenerating heart. Mechanistically, we demonstrate that physiological reinnervation during regeneration is dependent on collateral artery formation. Our results reveal clinically significant insights into cardiac nerve plasticity which can identify new therapies for cardiac disease.

5.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745413

RESUMEN

The metabolic switch from glycolysis to fatty acid oxidation in postnatal cardiomyocytes contributes to the loss of the cardiac regenerative potential of the mammalian heart. However, the mechanisms that regulate this metabolic switch remain unclear. The protein kinase complex mechanistic target of rapamycin complex 1 (mTORC1) is a central signaling hub that regulates cellular metabolism and protein synthesis, yet its role during mammalian heart regeneration and postnatal metabolic maturation is undefined. Here, we use immunoblotting, rapamycin treatment, myocardial infarction, and global proteomics to define the role of mTORC1 in postnatal heart development and regeneration. Our results demonstrate that the activity of mTORC1 is dynamically regulated between the regenerating and the non-regenerating hearts. Acute inhibition of mTORC1 by rapamycin or everolimus reduces cardiomyocyte proliferation and inhibits neonatal heart regeneration following injury. Our quantitative proteomic analysis demonstrates that transient inhibition of mTORC1 during neonatal heart injury did not reduce protein synthesis, but rather shifts the cardiac proteome of the neonatal injured heart from glycolysis towards fatty acid oxidation. This indicates that mTORC1 inhibition following injury accelerates the postnatal metabolic switch, which promotes metabolic maturation and impedes cardiomyocyte proliferation and heart regeneration. Taken together, our results define an important role for mTORC1 in regulating postnatal cardiac metabolism and may represent a novel target to modulate cardiac metabolism and promote heart regeneration.

6.
ACS Omega ; 8(25): 22646-22655, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396232

RESUMEN

Atomic nitrogen doping on CeO2 nanoparticles (NPs) by an efficient and environmentally benign urea thermolysis approach is first studied, and its effects on the intrinsic scavenging activity of the CeO2 NPs for reactive oxygen radicals are investigated. The N-doped CeO2 (N-CeO2) NPs, characterized by X-ray photoelectron and Raman spectroscopy analyses, showed considerably high levels of N atomic doping (2.3-11.6%), accompanying with an order of magnitude increase of the lattice oxygen vacancies on the CeO2 crystal surface. The radical scavenging properties of the N-CeO2 NPs are characterized by applying Fenton's reaction with collective and quantitative kinetic analysis. The results revealed that the significant increase of surface oxygen vacancies is the leading cause for the enhancements of radical scavenging properties by the N doping of CeO2 NPs. Enriched with abundant surface oxygen vacancies, the N-CeO2 NPs prepared by urea thermolysis provided about 1.4-2.5 times greater radical scavenging properties than the pristine CeO2. The collective kinetic analysis revealed that the surface-area-normalized intrinsic radical scavenging activity of the N-CeO2 NPs is about 6- to 8-fold greater than that of the pristine CeO2 NPs. The results suggest the high effectiveness of the N doping of CeO2 by the environmentally benign urea thermolysis approach to enhance the radical scavenging activity of CeO2 NPs for extensive applications such as that in polymer electrolyte membrane fuel cells.

7.
NPJ Regen Med ; 8(1): 39, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507410

RESUMEN

Leucine-rich repeat containing 10 (LRRC10) is a cardiomyocyte-specific protein, but its role in cardiac biology is little understood. Recently Lrrc10 was identified as required for endogenous cardiac regeneration in zebrafish; however, whether LRRC10 plays a role in mammalian heart regeneration remains unclear. In this study, we demonstrate that Lrrc10-/- knockout mice exhibit a loss of the neonatal mouse regenerative response, marked by reduced cardiomyocyte cytokinesis and increased cardiomyocyte binucleation. Interestingly, LRRC10 deletion disrupts the regenerative transcriptional landscape of the regenerating neonatal mouse heart. Remarkably, cardiac overexpression of LRRC10 restores cardiomyocyte cytokinesis, increases cardiomyocyte mononucleation, and the cardiac regenerative capacity of Lrrc10-/- mice. Our results are consistent with a model in which LRRC10 is required for cardiomyocyte cytokinesis as well as regulation of the transcriptional landscape during mammalian heart regeneration.

8.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36711742

RESUMEN

Cardiac nerves regulate neonatal mouse heart regeneration and are susceptible to pathological remodeling following adult injury. Understanding cardiac nerve remodeling can lead to new strategies to promote cardiac repair. Our current understanding of cardiac nerve architecture has been limited to two-dimensional analysis. Here, we use genetic models, whole-mount imaging, and three-dimensional modeling tools to define cardiac nerve architecture and neurovascular association during development, disease, and regeneration. Our results demonstrate that cardiac nerves sequentially associate with coronary veins and arteries during development. Remarkably, our results reveal that parasympathetic nerves densely innervate the ventricles. Furthermore, parasympathetic and sympathetic nerves develop synchronously and are intertwined throughout the ventricles. Importantly, the regenerating myocardium reestablishes physiological innervation, in stark contrast to the non-regenerating heart. Mechanistically, reinnervation during regeneration is dependent on collateral artery formation. Our results reveal how defining cardiac nerve remodeling during homeostasis, disease, and regeneration can identify new therapies for cardiac disease.

9.
Front Nutr ; 9: 1036655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438760

RESUMEN

Identifying functional brown adipose tissue (BAT) has provided new hope for obesity treatment and prevention. Functional BAT includes classical BAT and brown-like adipose tissue converted from white adipose tissue. By promoting thermogenesis (i.e., heat production) via uncoupling protein 1 (UCP1), functional BAT can increase energy expenditure and aid obesity treatment and prevention. Naringenin (NAR) is a flavanone primarily found in citrus fruits. NAR has been reported to decrease body weight, increase energy expenditure in treated mice, and promote browning in human adipocytes. Here, we examined the effects of NAR on 3T3-L1 adipocytes' browning and ß-adrenergic agonist isoproterenol (ISO)-stimulated thermogenic activation and classical murine brown adipogenesis. In addition, we demonstrated the signaling pathways and involvement of peroxisome proliferator-activated receptor gamma (PPARγ) in the process. We found that NAR did not increase Ucp1 mRNA expression at the basal (i.e., non-ISO stimulated) condition. Instead, it enhanced Ucp1 and Pgc-1α up-regulation and thermogenesis under ISO-stimulated conditions in 3T3-L1 adipocytes. NAR promoted protein kinase A (PKA) activation and phosphorylation of p38 MAPK downstream of ISO stimulation and activated PPARγ. Pharmacological inhibition of either PKA or p38 and PPARγ knockdown attenuated Ucp1 up-regulation by NAR. Moreover, NAR promoted brown adipogenesis by increasing lipid accumulation, brown marker expression, and thermogenesis in murine brown adipocytes, which was also attenuated by PPARγ knockdown. Together, our results suggest that NAR may promote the development of functional BAT in part through PPARγ activation. NAR's role in combating human obesity warrants further investigation.

10.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35453374

RESUMEN

Arsenic, a naturally occurring metalloid derived from the environment, has been studied worldwide for its causative effects in various cancers. However, the effects of arsenic toxicity on the development and progression of metabolic syndrome, including obesity and diabetes, has received less attention. Many studies suggest that metabolic dysfunction and autophagy dysregulation of adipose and muscle tissues are closely related to the development of metabolic disease. In the USA, arsenic contamination has been reported in some ground water, soil and grain samples in major agricultural regions, but the effects on adipose and muscle tissue metabolism and autophagy have not been investigated much. Here, we highlight arsenic toxicity according to the species, dose and exposure time and the effects on adipose and muscle tissue metabolism and autophagy. Historically, arsenic was used as both a poison and medicine, depending on the dose and treatment time. In the modern era, arsenic intoxication has significantly increased due to exposure from water, soil and food, which could be a contributing factor in the development and progression of metabolic disease. From this review, a better understanding of the pathogenic mechanisms by which arsenic alters metabolism and autophagy regulation could become a cornerstone leading to the development of therapeutic strategies against arsenic-induced toxicity and metabolic disease.

11.
Front Cardiovasc Med ; 8: 702920, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336958

RESUMEN

Heart failure is the leading cause of death worldwide. The inability of the adult mammalian heart to regenerate following injury results in the development of systolic heart failure. Thus, identifying novel approaches toward regenerating the adult heart has enormous therapeutic potential for adult heart failure. Mitochondrial metabolism is an essential homeostatic process for maintaining growth and survival. The emerging role of mitochondrial metabolism in controlling cell fate and function is beginning to be appreciated. Recent evidence suggests that metabolism controls biological processes including cell proliferation and differentiation, which has profound implications during development and regeneration. The regenerative potential of the mammalian heart is lost by the first week of postnatal development when cardiomyocytes exit the cell cycle and become terminally differentiated. This inability to regenerate following injury is correlated with the metabolic shift from glycolysis to fatty acid oxidation that occurs during heart maturation in the postnatal heart. Thus, understanding the mechanisms that regulate cardiac metabolism is key to unlocking metabolic interventions during development, disease, and regeneration. In this review, we will focus on the emerging role of metabolism in cardiac development and regeneration and discuss the potential of targeting metabolism for treatment of heart failure.

12.
Circulation ; 143(20): 1973-1986, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33666092

RESUMEN

BACKGROUND: Neonatal mouse cardiomyocytes undergo a metabolic switch from glycolysis to oxidative phosphorylation, which results in a significant increase in reactive oxygen species production that induces DNA damage. These cellular changes contribute to cardiomyocyte cell cycle exit and loss of the capacity for cardiac regeneration. The mechanisms that regulate this metabolic switch and the increase in reactive oxygen species production have been relatively unexplored. Current evidence suggests that elevated reactive oxygen species production in ischemic tissues occurs as a result of accumulation of the mitochondrial metabolite succinate during ischemia via succinate dehydrogenase (SDH), and this succinate is rapidly oxidized at reperfusion. Mutations in SDH in familial cancer syndromes have been demonstrated to promote a metabolic shift into glycolytic metabolism, suggesting a potential role for SDH in regulating cellular metabolism. Whether succinate and SDH regulate cardiomyocyte cell cycle activity and the cardiac metabolic state remains unclear. METHODS: Here, we investigated the role of succinate and SDH inhibition in regulation of postnatal cardiomyocyte cell cycle activity and heart regeneration. RESULTS: Our results demonstrate that injection of succinate into neonatal mice results in inhibition of cardiomyocyte proliferation and regeneration. Our evidence also shows that inhibition of SDH by malonate treatment after birth extends the window of cardiomyocyte proliferation and regeneration in juvenile mice. Remarkably, extending malonate treatment to the adult mouse heart after myocardial infarction injury results in a robust regenerative response within 4 weeks after injury via promoting adult cardiomyocyte proliferation and revascularization. Our metabolite analysis after SDH inhibition by malonate induces dynamic changes in adult cardiac metabolism. CONCLUSIONS: Inhibition of SDH by malonate promotes adult cardiomyocyte proliferation, revascularization, and heart regeneration via metabolic reprogramming. These findings support a potentially important new therapeutic approach for human heart failure.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Malonatos/uso terapéutico , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Regeneración/efectos de los fármacos , Animales , Proliferación Celular , Humanos , Masculino , Malonatos/farmacología , Ratones , Transducción de Señal
13.
ACS Omega ; 4(22): 19705-19709, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31788601

RESUMEN

The 1,8-naphthalimide (NI) derivative Lumogen F Violet 570 exhibits different photoluminescence (PL) and aggregation-caused quenching properties due to its crystal polymorphism, which depends on the solvent evaporation process in tetrahydrofuran solution. In the slow drying process, molecules aggregated into an energetically more stable form (time-dependent density functional theory calculation), of which the PL peak maximum was 453 nm, corresponding to blue emission at the 365 nm excitation. However, the fast evaporation process induces an energetically less stable form, with a PL peak maximum of 508 nm, corresponding to green emission. The main difference between the two crystal structures is the alkyl conformation, as confirmed by X-ray single-crystal analysis. Due to the different alkyl conformations, NI groups aggregated into more obliquely aligned structures that emit blue PL, which plays a role in weakening the π-π interactions between molecules relative to green PL crystals. We found that the conformational stable molecular stacking induced instability in the electronic energy levels of the blue crystal compared to the green crystal.

14.
Sci Rep ; 9(1): 14464, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594991

RESUMEN

Arsenite, a trivalent form of arsenic, is an element that occurs naturally in the environment. Humans are exposed to high dose of arsenite through consuming arsenite-contaminated drinking water and food, and the arsenite can accumulate in the human tissues. Arsenite induces oxidative stress, which is linked to metabolic disorders such as obesity and diabetes. Brown adipocytes dissipating energy as heat have emerging roles for obesity treatment and prevention. Therefore, understanding the pathophysiological role of brown adipocytes can provide effective strategies delineating the link between arsenite exposure and metabolic disorders. Our study revealed that arsenite significantly reduced differentiation of murine brown adipocytes and mitochondrial biogenesis and respiration, leading to attenuated thermogenesis via decreasing UCP1 expression. Oral administration of arsenite in mice resulted in heavy accumulation in brown adipose tissue and suppression of lipogenesis, mitochondrial biogenesis and thermogenesis. Mechanistically, arsenite exposure significantly inhibited autophagy necessary for homeostasis of brown adipose tissue through suppression of Sestrin2 and ULK1. These results clearly confirm the emerging mechanisms underlying the implications of arsenite exposure in metabolic disorders.


Asunto(s)
Adipogénesis/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Arsenitos/toxicidad , Autofagia , Mitocondrias/efectos de los fármacos , Biogénesis de Organelos , Termogénesis/efectos de los fármacos , Adipocitos/efectos de los fármacos , Administración Oral , Animales , Arsenitos/administración & dosificación , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Línea Celular , Masculino , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Peroxidasas/metabolismo
15.
Front Physiol ; 10: 22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30745879

RESUMEN

Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy through targeted deletion of autophagy genes in mice improved anti-obesity phenotypes. In addition, active mitochondria clearance through activation of autophagy was required for beige/brown fat whitening - that is, conversion to white fat. However, inhibition of autophagy seemed detrimental in hypermetabolic conditions such as hepatic steatosis, atherosclerosis, thermal injury, sepsis, and cachexia through an increase in free fatty acid and glycerol release from WAT. The emerging concept of white fat browning-conversion to beige/brown fat-has been controversial in its anti-obesity effect through facilitation of weight loss and improving metabolic health. Thus, proper regulation of autophagy activity fit to an individual metabolic profile is necessary to ensure balance in adipose tissue metabolism and function, and to further prevent metabolic disorders such as obesity and diabetes. In this review, we summarize the effect of autophagy in adipose tissue browning in the context of obesity prevention and its potential as a promising target for the development of anti-obesity drugs.

16.
Dent Mater J ; 36(5): 590-599, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28450674

RESUMEN

The authors have developed a ß-tricalcium-phosphate (ß-TCP) powder modified mechano-chemically through the application of a ball-milling process (mß-TCP). The resulting powder can be used in a calcium-phosphate-cement (CPC). In this study, the effects of the powder-to-liquid ratio (P/L ratio) on the properties of the CPCs were investigated, and an appropriate P/L ratio that would simultaneously improve injectability and strength was clarified. The mß-TCP cement mixed at a P/L ratio of 2.5 and set in air exhibited sufficient injectability until 20 min after mixing, and strength similar to or higher than that mixed at a P/L ratio of 2.0 and 2.78. Although the mß-TCP cements set in vivo and in SBF were found to exhibit a lower strength than those set in air, it did have an appropriate setting time and strength for clinical applications. In conclusion, P/L ratio optimization successfully improved the strength of injectable mß-TCP cement.


Asunto(s)
Cementos para Huesos , Fosfatos de Calcio , Fuerza Compresiva , Cemento Dental , Humanos , Ensayo de Materiales , Polvos
17.
J Mech Behav Biomed Mater ; 61: 581-589, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27148637

RESUMEN

The prosthetic applications of titanium have been challenging because titanium does not possess suitable properties for the conventional casting method using the lost wax technique. We have developed a production method for biomedical application of porous titanium using a moldless process. This study aimed to evaluate the physical and mechanical properties of porous titanium using various particle sizes, shapes, and mixing ratio of titanium powder to wax binder for use in prosthesis production. CP Ti powders with different particle sizes, shapes, and mixing ratios were divided into five groups. A 90:10wt% mixture of titanium powder and wax binder was prepared manually at 70°C. After debinding at 380°C, the specimen was sintered in Ar at 1100°C without a mold for 1h. The linear shrinkage ratio of sintered specimens ranged from 2.5% to 14.2%. The linear shrinkage ratio increased with decreasing particle size. While the linear shrinkage ratio of Groups 3, 4, and 5 were approximately 2%, Group 1 showed the highest shrinkage of all. The bending strength ranged from 106 to 428MPa under the influence of porosity. Groups 1 and 2 presented low porosity followed by higher strength. The shear bond strength ranged from 32 to 100MPa. The shear bond strength was also particle-size dependent. The decrease in the porosity increased the linear shrinkage ratio and bending strength. Shrinkage and mechanical strength required for prostheses were dependent on the particle size and shape of titanium powders. These findings suggested that this production method can be applied to the prosthetic framework by selecting the material design.


Asunto(s)
Prótesis e Implantes , Titanio/química , Ensayo de Materiales , Tamaño de la Partícula , Porosidad
18.
Biomed Mater ; 11(1): 015012, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26836201

RESUMEN

Porous titanium has long been desired as a bone substitute material because of its ability to reduce the stress shielding in supporting bone. In order to achieve the various pore structures, we have evolved a moldless process combined with a space holder technique to fabricate porous titanium. This study aims to evaluate which pore size is most suitable for bone regeneration using our process. The mixture comprising Ti powder, wax binder and PMMA spacer was prepared manually at 70 °C which depended on the mixing ratio of each group. Group 1 had an average pore size of 60 µm, group 2 had a maximum pore size of 100 µm, group 3 had a maximum pore size of 200 µm and group 4 had a maximum pore size of 600 µm. These specimens were implanted into rabbit calvaria for three and 20 weeks. Thereafter, histomorphometrical evaluation was performed. In the histomorphometrical evaluation after three weeks, the group with a 600 µm pore size showed a tendency to greater bone ingrowth. However, after 20 weeks the group with a pore size of 100 µm showed significantly greater bone ingrowth than the other groups. This study suggested that bone regeneration into porous titanium scaffolds is pore size-dependent, while bone ingrowth was most prominent for the group with 100 µm-sized pores after 20 weeks in vivo.


Asunto(s)
Sustitutos de Huesos/síntesis química , Oseointegración , Polimetil Metacrilato/química , Fracturas Craneales/patología , Fracturas Craneales/terapia , Andamios del Tejido , Animales , Regeneración Ósea , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Porosidad , Conejos , Fracturas Craneales/fisiopatología , Resultado del Tratamiento , Ceras/química
19.
Clin Nutr Res ; 4(3): 168-74, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26251835

RESUMEN

Appetite controlling has been an main strategy for regulating food intake and energy balance in obesity treatment. The aim of this study was to examine the effects of drinking tea of the medicinal herbs, fennel and fenugreek, on the subjective appetite in overweight Korean women. The study was conducted using a placebo-controlled, single-blinded, randomized, and 3-way crossover design. Nine healthy women were given fennel tea (FT), fenugreek tea (FGT), or placebo tea (PT). After drinking a given tea, a lunch buffet was provided and then food consumption of subjects was analyzed. Subjective appetite, hunger, fullness, desire to eat, and prospective food consumption were measured at seven independent time point using a visual analog scale (VAS). Mean age of 9 subjects were 49.7 ± 4.5 years and their mean body mass index were 24.6 ± 0.6 kg/m(2). There was no significant difference in food consumption in the lunch buffet after drinking each tea; however, with respect to the subjective appetite scale, FGT decreased hunger, led to less prospective food consumption, and increased feelings of fullness compared with the PT (p < 0.05). Similarly, the consumption of FT resulted in decreased hunger, less prospective food consumption, and increased feelings of fullness compared with the PT (p < 0.05). The area under the curve of VAS graph indicated that FGT resulted in a higher feeling of fullness than the PT (p < 0.05). In conclusion, drinking the FT and FGT were significantly effective aid to suppress subjective appetite among overweight women in South Korea.

20.
J Mech Behav Biomed Mater ; 47: 77-86, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25855467

RESUMEN

Calcium phosphate cement (CPC) offers many advantages as a bone-substitution material. The objective of this study is to develop a new CPC that simultaneously exhibits fine injectability, a short setting time, and high strength. ß-tricalcium phosphate (ß-TCP, control) powder was ball-milled for 24h to produce a new cement powder. The modified ß-TCP after 24h milling (mß-TCP-24h) exhibited excellent injectability even 1h after mixing. The mechanical properties of the set cement (compact) were evaluated using compressive strength (CS) and diametral tensile strength (DTS) testing. The CS and DTS values of the mß-TCP-24h compacts were 8.02MPa and 2.62MPa, respectively, at 5h after mixing, and were 49.6MPa and 7.9MPa, respectively, at 2 weeks after mixing. All the CS and DTS values of the mß-TCP-24h compacts were significantly higher than those of the control for the same duration after mixing. These results suggest that the mechano-chemically modified ß-TCP powder dissolves rapidly and accelerates hydroxyapatite precipitation, which successfully shortens the cement setting time and enhances the strength. This study supports that mß-TCP-24h is a promising candidate for use in injectable CPCs with improved strength.


Asunto(s)
Cementos para Huesos , Fosfatos de Calcio , Fenómenos Mecánicos , Fuerza Compresiva , Inyecciones , Resistencia a la Tracción , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...