Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Allergy Clin Immunol ; 152(3): 783-798, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37244461

RESUMEN

BACKGROUND: IL-17A plays a pivotal pathogenic role in several immune-mediated inflammatory diseases. Despite sharing 50% sequence homology with IL-17A, the role of IL-17F remains less clear. Clinical findings suggest that dual inhibition of IL-17A and IL-17F in psoriatic disease is more efficacious than IL-17A inhibition alone, positing a pathogenic role for IL-17F. OBJECTIVE: We characterized the regulation of IL-17A and IL-17F in psoriatic disease. METHODS: Using both in vitro systems and lesional skin tissue from patients, we interrogated the chromosomal, transcriptional, and protein expression landscape of IL-17A+ and IL-17F+ TH17 cells. Alongside established assays such as single-cell RNA sequencing, we developed a novel cytokine-capture technique that was combined with chromatin immunoprecipitation sequencing and RNA sequencing. RESULTS: We confirm a preferential elevation of IL-17F over IL-17A in psoriatic disease and show that expression of each isoform predominantly occurs in distinct cell populations. The expression of both IL-17A and IL-17F exhibited a high degree of plasticity, with the balance between the 2 isoforms influenced by proinflammatory signaling and by anti-inflammatory drugs such as methylprednisolone. This plasticity was reflected in a broad H3K4me3 region at the IL17A-F locus, while opposing effects of STAT5/IL-2 signaling were observed for each of the 2 genes. Functionally, higher IL17F expression was linked to greater cell proliferation. CONCLUSION: There are key differences in the regulation of IL-17A and IL-17F in psoriatic disease, leading to distinct inflammatory cell populations. As such, we propose that both IL-17A and IL-17F neutralization may be required to maximally inhibit IL-17-driven pathology.


Asunto(s)
Interleucina-17 , Factor de Transcripción STAT5 , Humanos , Interleucina-17/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal
2.
Arthritis Rheumatol ; 75(7): 1152-1165, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36657110

RESUMEN

OBJECTIVE: Spondyloarthritis (SpA) is characterized by pathologic osteogenesis, inflammation, and extensive angiogenesis in axial and peripheral tissues. Current therapies effectively target inflammation, but these therapies lack efficacy in preventing pathologic osteogenesis. Transgenic mice overexpressing transmembrane tumor necrosis factor (tmTNF-Tg mice) exhibit SpA-like features. We hypothesized that type H blood vessels, which are implicated in osteogenesis, are increased and contribute to pathology in this experimental SpA model. METHODS: We analyzed ankles, femora, and vertebrae of tmTNF-Tg mice and nontransgenic littermates and tmTNF-Tg mice on either a TNF receptor type I (TNFRI)-deficient or TNF receptor type II (TNFRII)-deficient background for osteogenesis, angiogenesis, and inflammation using advanced imaging technologies at various stages of disease. RESULTS: Compared to nontransgenic littermates, tmTNF-Tg mice exhibited an increase in vertebral type H vessels and osteoprogenitor cells in subchondral bone. These features of increased angiogenesis and osteogenesis were already present before onset of clinical disease symptoms. Type H vessels and osteoprogenitor cells were in close proximity to inflammatory lesions and ectopic lymphoid structures. The tmTNF-Tg mice also showed perivertebral ectopic type H vessels and osteogenesis, an increased number of vertebral transcortical vessels, and enhanced entheseal angiogenesis. In tmTNF-Tg mice crossed on a TNFRI- or TNFRII-deficient background, no clear reduction in type H vessels was shown, suggesting that type H vessel formation is not exclusively mediated via TNFRI or TNFRII. CONCLUSION: The contribution of type H vessels to pathologic osteogenesis in experimental SpA advances our knowledge of the pathophysiology of this disease and may also provide a novel opportunity for targeted intervention.


Asunto(s)
Osteogénesis , Espondiloartritis , Ratones , Animales , Inflamación , Espondiloartritis/tratamiento farmacológico , Ratones Transgénicos , Factor de Necrosis Tumoral alfa
3.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055042

RESUMEN

The tumor necrosis factor (TNF) and IL-23/IL-17 axes are the main therapeutic targets in spondyloarthritis. Despite the clinical efficacy of blocking either pathway, monotherapy does not induce remission in all patients and its effect on new bone formation remains unclear. We aimed to study the effect of TNF and IL-17A dual inhibition on clinical disease and structural damage using the HLA-B27/human ß2-microglobulin transgenic rat model of SpA. Immunized rats were randomized according to arthritis severity, 1 week after arthritis incidence reached 50%, to be treated twice weekly for a period of 5 weeks with either a dual blockade therapy of an anti-TNF antibody and an anti-IL-17A antibody, a single therapy of either antibody, or PBS as vehicle control. Treatment-blinded observers assessed inflammation and structural damage clinically, histologically and by micro-CT imaging. Both single therapies as well as TNF and IL-17A dual blockade therapy reduced clinical spondylitis and peripheral arthritis effectively and similarly. Clinical improvement was confirmed for all treatments by a reduction of histological inflammation and pannus formation (p < 0.05) at the caudal spine. All treatments showed an improvement of structural changes at the axial and peripheral joints on micro-CT imaging, with a significant decrease for roughness (p < 0.05), which reflects both erosion and new bone formation, at the level of the caudal spine. The effect of dual blockade therapy on new bone formation was more prominent at the axial than the peripheral level. Collectively, our study showed that dual blockade therapy significantly reduces inflammation and structural changes, including new bone formation. However, we could not confirm a more pronounced effect of dual inhibition compared to single inhibition.


Asunto(s)
Interleucina-17/antagonistas & inhibidores , Espondiloartritis/etiología , Espondiloartritis/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Artritis/tratamiento farmacológico , Artritis/etiología , Artritis/metabolismo , Artritis/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Imagenología Tridimensional , Inmunohistoquímica , Masculino , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Ratas , Ratas Transgénicas , Espondiloartritis/diagnóstico , Espondiloartritis/tratamiento farmacológico , Microtomografía por Rayos X
4.
Arthritis Care Res (Hoboken) ; 74(12): 2076-2084, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34219406

RESUMEN

OBJECTIVE: As first-degree relatives (FDRs) of HLA-B27-positive patients with axial spondyloarthritis (SpA) have an increased risk of developing axial SpA, the objectives were 1) to evaluate the presence of highly specific imaging features as well as clinical signs of SpA at baseline and after 1 year of follow-up, and 2) to describe the evolution toward clinical disease within 1 year of follow-up in a cohort of seemingly healthy FDRs of HLA-B27-positive axial SpA patients. METHODS: The Pre-SpA cohort is a 5-year prospective inception cohort of seemingly healthy FDRs of HLA-B27-positive axial SpA patients. Clinical and imaging features were collected and recorded. RESULTS: At baseline, 19% of the FDRs reported inflammatory back pain, 32% current arthralgia, 3% arthritis (ever), 5% enthesitis (ever), and 1% dactylitis (ever), and 3% had an extraarticular manifestation. C-reactive protein level was elevated in 16%, and erythrocyte sedimentation rate was elevated in 7%. On magnetic resonance imaging (MRI) views of sacroiliac joints, 10% had a Spondyloarthritis Research Consortium of Canada score of ≥2, 4% had a score of ≥5, and 4% had deep lesions. In total, 1% fulfilled the modified New York criteria for radiographic sacroiliitis. Clinical, MRI, and acute phase findings were equally distributed between HLA-B27-positive and -negative FDRs. After 1 year of follow-up, clinical parameters did not change on the group level, but 6% of the FDRs were clinically diagnosed with axial SpA, of whom 86% were HLA-B27-positive. CONCLUSION: Features associated with SpA or imaging abnormalities were found in up to 32% of seemingly healthy FDRs, with an equal distribution between HLA-B27-positive and -negative FDRs. Progression to clinical axial SpA within 1 year of follow-up was mainly observed in HLA-B27-positive FDRs.


Asunto(s)
Antígeno HLA-B27 , Espondiloartritis , Humanos , Antígeno HLA-B27/genética , Estudios Prospectivos , Dolor de Espalda/diagnóstico , Espondiloartritis/diagnóstico por imagen , Espondiloartritis/genética , Imagen por Resonancia Magnética/métodos , Inflamación/complicaciones
5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769069

RESUMEN

C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.


Asunto(s)
Proteína C-Reactiva/metabolismo , Subunidad p19 de la Interleucina-23/metabolismo , Monocitos/metabolismo , Células Cultivadas , Humanos , Subunidad p19 de la Interleucina-23/genética , ARN Mensajero/genética , Activación Transcripcional
6.
J Immunol ; 207(9): 2337-2346, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561228

RESUMEN

TNF is important in immune-mediated inflammatory diseases, including spondyloarthritis (SpA). Transgenic (tg) mice overexpressing transmembrane TNF (tmTNF) develop features resembling human SpA. Furthermore, both tmTNF tg mice and SpA patients develop ectopic lymphoid aggregates, but it is unclear whether these contribute to pathology. Therefore, we characterized the lymphoid aggregates in detail and studied potential alterations in the B and T cell lineage in tmTNF tg mice. Lymphoid aggregates developed in bone marrow (BM) of vertebrae and near the ankle joints prior to the first SpA features and displayed characteristics of ectopic lymphoid structures (ELS) including presence of B cells, T cells, germinal centers, and high endothelial venules. Detailed flow cytometric analyses demonstrated more germinal center B cells with increased CD80 and CD86 expression, along with significantly more T follicular helper, T follicular regulatory, and T regulatory cells in tmTNF tg BM compared with non-tg controls. Furthermore, tmTNF tg mice exhibited increased IgA serum levels and significantly more IgA+ plasma cells in the BM, whereas IgA+ plasma cells in the gut were not significantly increased. In tmTNF tg × TNF-RI-/- mice, ELS were absent, consistent with reduced disease symptoms, whereas in tmTNF tg × TNF-RII-/- mice, ELS and clinical symptoms were still present. Collectively, these data show that tmTNF overexpression in mice results in osteitis and ELS formation in BM, which may account for the increased serum IgA levels that are also observed in human SpA. These effects are mainly dependent on TNF-RI signaling and may underlie important aspects of SpA pathology.


Asunto(s)
Linfocitos B/inmunología , Médula Ósea/metabolismo , Centro Germinal/inmunología , Proteínas de la Membrana/metabolismo , Osteítis/inmunología , Espondilitis Anquilosante/inmunología , Linfocitos T/inmunología , Estructuras Linfoides Terciarias/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Médula Ósea/patología , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina A/metabolismo , Proteínas de la Membrana/genética , Ratones , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética
7.
Front Immunol ; 12: 699987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552583

RESUMEN

Objective: IL-17A plays a major role in the pathogenesis of spondyloarthritis (SpA). Here we assessed the impact of inhibition of RAR related orphan receptor-γ (RORC), the key transcription factor controlling IL-17 production, on experimental SpA in HLA-B27 transgenic (tg) rats. Methods: Experimental SpA was induced by immunization of HLA-B27 tg rats with heat-inactivated Mycobacterium tuberculosis. Splenocytes obtained at day 7, 14 and 21 after immunization were restimulated ex vivo to assess the induction of pro-inflammatory cytokines. Rats were then prophylactically treated with a RORC inhibitor versus vehicle control. The biologic effect of RORC inhibition was assessed by pro-inflammatory cytokine expression in draining lymph nodes. Arthritis and spondylitis were monitored clinically, and the degree of peripheral and axial inflammation, destruction and new bone formation was confirmed by histology. Results: Ex vivo mRNA and protein analyses revealed the rapid and selective induction of IL-17A and IL-22 production by a variety of lymphocyte subsets upon disease induction in HLA-B27 tg rats. Prophylactic RORC inhibition in vivo suppressed the expression of IL-17A, IL17F, and IL-22 without affecting the expression of other T helper cell subset related genes. This biological effect did not translate into clinical efficacy as RORC inhibition significantly accelerated the onset of arthritis and spondylitis, and aggravated the clinical severity of arthritis. This worsening of experimental SpA was confirmed by histopathological demonstration of increased inflammation, destruction, and new bone formation. Conclusion: Despite a significant suppression of the IL-17 axis, RORC inhibitor treatment accelerates and aggravates experimental SpA in the HLA-B27 tg rat model.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Espondiloartritis/inmunología , Espondiloartritis/patología , Animales , Modelos Animales de Enfermedad , Femenino , Antígeno HLA-B27/genética , Masculino , Ratas , Ratas Endogámicas Lew , Ratas Transgénicas
8.
JAMA Dermatol ; 157(11): 1279-1288, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406364

RESUMEN

IMPORTANCE: Hidradenitis suppurativa (HS) is a chronic inflammatory disease with a high burden for patients and limited existing therapeutic options. OBJECTIVE: To evaluate the efficacy and safety of bimekizumab, a monoclonal IgG1 antibody that selectively inhibits interleukin 17A and 17F in individuals with moderate to severe HS. DESIGN, SETTING, AND PARTICIPANTS: This phase 2, double-blind, placebo-controlled randomized clinical trial with an active reference arm was performed from September 22, 2017, to February 21, 2019. The study included a 2- to 4-week screening period, a 12-week treatment period, and a 20-week safety follow-up. Of 167 participants screened at multiple centers, 90 were enrolled. Eligible participants were 18 to 70 years of age with a diagnosis of moderate to severe HS 12 months or more before baseline. INTERVENTIONS: Participants with HS were randomized 2:1:1 to receive bimekizumab (640 mg at week 0, 320 mg every 2 weeks), placebo, or reference arm adalimumab (160 mg at week 0, 80 mg at week 2, and 40 mg every week for weeks 4-10). MAIN OUTCOMES AND MEASURES: The prespecified primary efficacy variable was the proportion of participants with a 50% or greater reduction from baseline in the total abscess and inflammatory nodule count with no increase in abscess or draining fistula count (Hidradenitis Suppurativa Clinical Response [HiSCR] at week 12. Exploratory variables included proportion achieving a modified HiSCR with 75% reduction of HiSCR criteria (HiSCR75) or a modified HiSCR with 90% reduction of HiSCR criteria (HiSCR90), change in Patient's Global Assessment of Pain, and Dermatology Life Quality Index total scores. RESULTS: Eighty-eight participants received at least 1 dose of study medication (61 [69%] female; median age, 36 years; range, 18-69 years). Seventy-three participants completed the study, including safety follow-up. Bimekizumab demonstrated a higher HiSCR rate vs placebo at week 12 (57.3% vs 26.1%; posterior probability of superiority equaled 0.998, calculated using bayesian analysis). Bimekizumab demonstrated greater clinical improvements compared with placebo. Improvements in the International Hidradenitis Suppurativa Severity Score (IHS4) were seen at week 12 with bimekizumab (mean [SD] IHS4, 16.0 [18.0]) compared with placebo (mean [SD] IHS4, 40.2 [32.6]). More bimekizumab-treated participants achieved positive results on stringent outcome measures compared with placebo. At week 12, 46% of bimekizumab-treated participants achieved HiSCR75 and 32% achieved HiSCR90, whereas 10% of placebo-treated participants achieved HiSCR75 and none achieved HiSCR90; in adalimumab-treated participants, 35% achieved HiSCR75 and 15% achieved HiSCR90. One participant withdrew because of adverse events. Serious adverse events occurred in 2 of 46 bimekizumab-treated participants (4%), 2 of 21 placebo-treated participants (10%), and 1 of 21 adalimumab-treated participants (5%). CONCLUSIONS AND RELEVANCE: In this phase 2 randomized clinical trial, bimekizumab demonstrated clinically meaningful improvements across all outcome measures, including stringent outcomes. Bimekizumab's safety profile was consistent with studies of other indications, supporting further evaluation in participants with HS. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03248531.


Asunto(s)
Hidradenitis Supurativa , Adalimumab/efectos adversos , Adulto , Anticuerpos Monoclonales Humanizados , Teorema de Bayes , Método Doble Ciego , Esquema de Medicación , Femenino , Hidradenitis Supurativa/diagnóstico , Hidradenitis Supurativa/tratamiento farmacológico , Humanos , Lactante , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
9.
Front Chem ; 9: 668186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017820

RESUMEN

Over the last 10 years considerable progress has been made in the application of small molecules to modulating protein-protein interactions (PPIs), and the navigation from "undruggable" to a host of candidate molecules in clinical trials has been well-charted in recent, comprehensive reviews. Structure-based design has played an important role in this scientific journey, with three dimensional structures guiding medicinal chemistry efforts. However, the importance of two additional dimensions: movement and time is only now being realised, as increasing computing power, closely aligned with wet lab validation, is applied to the challenge. Protein dynamics are fundamental to biology and disease, and application to PPI drug discovery has massively widened the scope for new chemical entities to influence function from allosteric, and previously unreported, sites. In this forward-looking perspective we highlight exciting, new opportunities for small molecules to modulate disease biology, by adjusting the frequency profile of natural conformational sampling, through the stabilisation of clinically desired conformers of target proteins.

10.
Autoimmun Rev ; 20(6): 102833, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33864944

RESUMEN

Lymphocytes constitute an essential and potent effector compartment of the immune system. Therefore, their development and functions must be strictly regulated to avoid inappropriate immune responses, such as autoimmune reactions. Several lines of evidence from genetics (e.g. association with multiple sclerosis and primary biliary cirrhosis), human expression studies (e.g. increased expression in target tissues and draining lymph nodes of patients with autoimmune diseases), animal models (e.g. loss of functional protein protects animals from the development of collagen-induced arthritis, experimental autoimmune encephalomyelitis, type 1 diabetes, bleomycin-induced fibrosis) strongly support a causal link between the aberrant expression of the lymphocyte-restricted transcriptional regulator BOB.1 and the development of autoimmune diseases. In this review, we summarize the current knowledge of unusual structural and functional plasticity of BOB.1, stringent regulation of its expression, and the pivotal role that BOB.1 plays in shaping B- and T-cell responses. We discuss recent developments highlighting the significant contribution of BOB.1 to the pathogenesis of autoimmune diseases and how to leverage our knowledge to target this regulator to treat autoimmune tissue inflammation.


Asunto(s)
Autoinmunidad , Encefalomielitis Autoinmune Experimental , Animales , Autoinmunidad/genética , Linfocitos B , Encefalomielitis Autoinmune Experimental/genética , Humanos , Inflamación/genética , Linfocitos T
11.
Front Immunol ; 12: 611656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746955

RESUMEN

Background: Psoriatic arthritis (PsA) is a chronic inflammatory joint disease within the spondyloarthritis spectrum. IL-12p40/IL-23p40 blockade reduces PsA disease activity, but its impact on synovial inflammation remains unclear. Objectives: To investigate the cellular and molecular pathways affected by IL-12p40/IL-23p40 blockade with ustekinumab in the synovium of PsA patients. Methods: Eleven PsA patients with at least one inflamed knee or ankle joint were included in a 24-week single-center open-label study and received ustekinumab 45 mg/sc according to standard care at week 0, 4, and 16. Besides clinical outcomes, synovial tissue (ST) samples were obtained by needle arthroscopy from an inflamed knee or ankle joint at baseline, week 12 and 24 and analyzed by immunohistochemistry, RNA-sequencing and real-time quantitative polymerase chain reaction (qPCR). Results: We obtained paired baseline and week 12, and paired baseline, week 12 and 24 ST samples from nine and six patients, respectively. Eight patients completed 24 weeks of clinical follow-up. At 12 weeks 6/11 patients met ACR20, 2/11 met ACR50 and 1/11 met ACR70 improvement criteria, at 24 weeks this was 3/8, 2/8 and 1/8 patients, respectively. Clinical and serological markers improved significantly. No serious adverse events occurred. We observed numerical decreases of all infiltrating cell subtypes at week 12, reaching statistical significance for CD68+ sublining macrophages. For some cell types this was even more pronounced at week 24, but clearly synovial inflammation was incompletely resolved. IL-17A and F, TNF, IL-6, IL-8, and IL-12p40 were not significantly downregulated in qPCR analysis of W12 total biopsies, only MMP3 and IL-23p19 were significantly decreased. RNA-seq analysis revealed 178 significantly differentially expressed genes between baseline and 12 weeks (FDR 0.1). Gene Ontology and KEGG terms enrichment analyses identified overrepresentation of biological processes as response to reactive oxygen species, chemotaxis, migration and angiogenesis as well as MAPK-ERK and PI3K-Akt signaling pathways among the downregulated genes and of Wnt signaling pathway among the upregulated genes. Furthermore, ACR20 responders and non-responders differed strikingly in gene expression profiles in a post-hoc exploratory analysis. Conclusions: Ustekinumab suppresses PsA synovial inflammation through modulation of multiple signal transduction pathways, including MAPK-ERK, Wnt and potentially PI3K-Akt signaling rather than by directly impacting the IL-17 pathway.


Asunto(s)
Subunidad p40 de la Interleucina-12/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sinovitis/metabolismo , Sinovitis/patología , Ustekinumab/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Agammaglobulinemia Tirosina Quinasa , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Psoriásica/tratamiento farmacológico , Artritis Psoriásica/etiología , Artritis Psoriásica/metabolismo , Artritis Psoriásica/patología , Biomarcadores , Biología Computacional/métodos , Citocinas/metabolismo , Ontología de Genes , Humanos , Inmunohistoquímica , Fosfatidilinositol 3-Quinasas/metabolismo , Índice de Severidad de la Enfermedad , Sinovitis/tratamiento farmacológico , Sinovitis/etiología , Transcriptoma , Ustekinumab/uso terapéutico
12.
Sci Rep ; 10(1): 21094, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273664

RESUMEN

Spondyloarthritis (SpA) is characterized by inflammation and new bone formation. The exact pathophysiology underlying these processes remains elusive. We propose that the extensive neoangiogenesis in SpA could play a role both in sustaining/enhancing inflammation and in new bone formation. While ample data is available on effects of anti-TNF on angiogenesis, effects of IL-17A blockade on serum markers are largely unknown. We aimed to assess the impact of secukinumab (anti-IL-17A) on synovial neoangiogenesis in peripheral SpA, and how this related to changes in inflammatory and tissue remodeling biomarkers. Serum samples from 20 active peripheral SpA patients included in a 12 week open-label trial with secukinumab were analyzed for several markers of angiogenesis and tissue remodeling. Synovial biopsies taken before and after treatment were stained for vascular markers. Serum levels of MMP-3, osteopontin, IL-6 (all P < 0.001), IL-31, S100A8, S100A9, Vascular Endothelial Growth Factor A (VEGF-A), IL-33, TNF-α (all P < 0.05) decreased significantly upon anti-IL17A treatment. Secukinumab treatment resulted in a decrease in the number of synovial high endothelial venules and lymphoid aggregate score. These results indicate that anti-IL-17A not only diminishes inflammation, but also impacts angiogenesis and tissue remodeling/new bone formation. This may have important implications for disease progression and/or structural damage.


Asunto(s)
Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neovascularización Fisiológica , Espondilitis Anquilosante/tratamiento farmacológico , Biomarcadores/sangre , Interleucinas/sangre , Articulaciones/irrigación sanguínea , Articulaciones/efectos de los fármacos , Metaloproteinasa 3 de la Matriz/sangre , Osteopontina/sangre , Proteínas S100/sangre , Espondilitis Anquilosante/sangre , Factor A de Crecimiento Endotelial Vascular/sangre , Vénulas/efectos de los fármacos , Vénulas/fisiología
13.
Front Immunol ; 11: 585134, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329560

RESUMEN

IL-23 is considered a critical regulator of IL-17 in Th17 cells; however, its requirement for inducing IL-17 production in other human immune subsets remains incompletely understood. Mucosal associated invariant T (MAIT) cells uniformly express retinoic acid receptor-related orphan receptor gamma t (RORγt) but only a minor population have been shown to produce IL-17A. Here we show that IL-17F is the dominant IL-17 isoform produced by MAIT cells, not IL-17A. For optimal MAIT cell derived IL-17A and IL-17F production, T cell receptor (TCR) triggering, IL-18 and monocyte derived IL-12 signaling is required. Unlike Th17 cells, this process is independent of IL-23 signaling. Using an in vitro skin cell activation assay, we demonstrate that dual neutralization of both IL-17A and IL-17F resulted in greater suppression of inflammatory proteins than inhibition of IL-17A alone. Finally, we extend our findings by showing that other innate-like lymphocytes such as group 3 innate lymphoid cells (ILC3) and gamma delta (γδ) T cells are also capable of IL-23 independent IL-17A and IL-17F production. These data indicate both IL-17F and IL-17A production from MAIT cells may contribute to tissue inflammation independently of IL-23, in part explaining the therapeutic disconnect between targeting IL-17 or IL-23 in certain inflammatory diseases.


Asunto(s)
Interleucina-12/inmunología , Interleucina-17/inmunología , Interleucina-18/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Células Cultivadas , Humanos , Interleucina-23/inmunología , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología
14.
J Immunol ; 205(12): 3400-3407, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33188071

RESUMEN

IgG Abs are crucial for various immune functions, including neutralization, phagocytosis, and Ab-dependent cellular cytotoxicity. In this study, we identified another function of IgG by showing that IgG immune complexes elicit distinct cytokine profiles by human myeloid immune cells, which are dependent on FcγR activation by the different IgG subclasses. Using monoclonal IgG subclasses with identical Ag specificity, our data demonstrate that the production of Th17-inducing cytokines, such as TNF, IL-1ß, and IL-23, is particularly dependent on IgG2, whereas type I IFN responses are controlled by IgG3, and IgG1 is able to regulate both. In addition, we identified that subclass-specific cytokine production is orchestrated at the posttranscriptional level through distinct glycolytic reprogramming of human myeloid immune cells. Combined, these data identify that IgG subclasses provide pathogen- and cell type-specific immunity through differential metabolic reprogramming by FcγRs. These findings may be relevant for future design of Ab-related therapies in the context of infectious diseases, chronic inflammation, and cancer.


Asunto(s)
Citocinas/inmunología , Inmunoglobulina G/inmunología , Células Mieloides/inmunología , Receptores de IgG/inmunología , Humanos , Células Mieloides/citología
15.
Sci Transl Med ; 12(570)2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208502

RESUMEN

Autoreactive B cells mediate autoimmune pathology, but exactly how remains unknown. A hallmark of rheumatoid arthritis (RA), a common autoimmune disease, is the presence of disease-specific anticitrullinated protein antibodies (ACPAs). Here, we showed that ACPA-positive B cells in patients with RA strongly expressed T cell-stimulating ligands, produced abundant proinflammatory cytokines, and were proliferative while escaping inhibitory signals. This activated state was found at different degrees in different stages of disease: highest in patients with recent-onset RA, moderate in patients with established RA, and far less pronounced in ACPA-positive individuals "at risk" for developing disease. The activated autoreactive B cell response persisted in patients who achieved clinical remission with conventional treatment. ACPA-positive B cells in blood and synovial fluid secreted increased amounts of the chemoattractant interleukin-8, which attracted neutrophils, the most abundant immune cell in arthritic joints. Tetanus toxoid-specific B cells from the same patients exhibited properties of memory B cells without the activation and proliferation phenotype, but these cells transiently acquired a similar proliferative phenotype upon booster vaccination. Together, these data indicated that continuous antigenic triggering of autoreactive B cells occurs in human autoimmune disease and support the emerging concept of immunological activity that persists under treatment even in clinical remission, which may revise our current concept of treatment targets for future therapeutic interventions. In addition, our data pointed to a pathogenic role of ACPA-positive B cells in the inflammatory disease process underlying RA and favor approaches that aim at their antigen-specific inactivation or depletion.


Asunto(s)
Artritis Reumatoide , Autoanticuerpos , Linfocitos B , Humanos , Inflamación , Líquido Sinovial
16.
RMD Open ; 6(2)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32723833

RESUMEN

OBJECTIVES: Interleukin (IL)-17 signalling has been shown to be a key regulator of disease in ankylosing spondylitis (AS) with several IL-17 blockers currently clinically approved. Despite this, the role of IL-17 in bone pathology is poorly understood. This study aimed to investigate IL-17 signalling in the context of pathological bone formation. METHODS: A biomimetic human periosteum-derived cell (hPDC) model of osteogenic differentiation was used in combination with recombinant IL-17 cytokines, T-cell supernatants or serum from patients with AS. IL-17A, IL-17F and bimekizumab monoclonal antibodies were used to block IL-17 cytokine action. RESULTS: Recombinant IL-17A and IL-17F are pro-osteogenic with respect to hPDC differentiation. T helper 17 or γδ-T cell supernatants also potently stimulated in vitro bone formation, which was blocked deeper by dual inhibition of IL-17A and IL-17F than by neutralisation of IL-17A or IL-17F individually. Osteogenic blockade may be due to an increase in expression of the Wnt antagonist DKK1. Interestingly, osteocommitment was also induced by serum obtained from patients with AS, which was also abrogated by dual neutralisation of IL-17A and IL-17F. CONCLUSIONS: These data show for the first time that IL-17A and IL-17F enhance in vitro osteogenic differentiation and bone formation from hPDCs, inhibition of which may offer an attractive therapeutic strategy to prevent pathological bone formation.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Diferenciación Celular/efectos de los fármacos , Interleucina-17/antagonistas & inhibidores , Osteogénesis/efectos de los fármacos , Periostio/citología , Anticuerpos Neutralizantes/farmacología , Matriz Ósea/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Calcificación Fisiológica/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Interleucina-17/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
17.
J Exp Med ; 217(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32662821

RESUMEN

TNF plays a key role in immune-mediated inflammatory diseases including rheumatoid arthritis (RA) and spondyloarthritis (SpA). It remains incompletely understood how TNF can lead to different disease phenotypes such as destructive peripheral polysynovitis in RA versus axial and peripheral osteoproliferative inflammation in SpA. We observed a marked increase of transmembrane (tm) versus soluble (s) TNF in SpA versus RA together with a decrease in the enzymatic activity of ADAM17. In contrast with the destructive polysynovitis observed in classical TNF overexpression models, mice overexpressing tmTNF developed axial and peripheral joint disease with synovitis, enthesitis, and osteitis. Histological and radiological assessment evidenced marked endochondral new bone formation leading to joint ankylosis over time. SpA-like inflammation, but not osteoproliferation, was dependent on TNF-receptor I and mediated by stromal tmTNF overexpression. Collectively, these data indicate that TNF can drive distinct inflammatory pathologies. We propose that tmTNF is responsible for the key pathological features of SpA.


Asunto(s)
Artritis/metabolismo , Osteogénesis , Espondiloartritis/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Proteína ADAM17/metabolismo , Adulto , Animales , Artritis/etiología , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Articulaciones/metabolismo , Masculino , Ratones , Receptores del Factor de Necrosis Tumoral/metabolismo , Espondiloartritis/etiología , Sinovitis/etiología , Sinovitis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Autoimmun ; 111: 102435, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360069

RESUMEN

The delta isoform of phosphoinositide 3-kinase (PI3Kδ) regulates various lymphocyte functions. Considering the key pro-inflammatory role of IL-17A and IL-17F cytokines in psoriasis and spondyloarthritis (SpA), we investigated the potential of PI3Kδ blockade to suppress IL-17A, IL-17F and associated pro-inflammatory cytokines that could synergize with IL-17A and IL-17F. Using in vitro studies with primary human cells and ex vivo studies with inflamed target tissues, we assessed if seletalisib, a selective PI3Kδ inhibitor, suppresses cytokine production by T cells and innate-like lymphocytes, and if seletalisib modulates the inflammatory responses in stromal cell populations in psoriasis (human dermal fibroblasts (HDF)) and SpA (fibroblast-like synoviocytes (FLS)). In vitro, seletalisib inhibited the production of pro-inflammatory cytokines, including IL-17A and IL-17F, from peripheral blood mononuclear cells (PBMCs), T helper 17 (Th17) cells as well as γδ-T cells and mucosal-associated invariant T cells. This inhibition resulted in decreased inflammatory activation of HDF in co-culture systems. Seletalisib was also efficacious in inhibiting SpA PBMCs and synovial fluid mononuclear cells (SFMCs) from producing pro-inflammatory cytokines. Furthermore, supernatant derived from cultured seletalisib-treated Th17 cells showed reduced potency for activating inflammatory responses from cultured SpA FLS and decreased their osteogenic differentiation capacity. Finally, analysis of inflamed SpA synovial tissue biopsies revealed activation of the PI3K-Akt-mTOR pathway. We observed that ex vivo seletalisib treatment of inflamed synovial tissue reduced IL-17A and IL-17F expression. Collectively, inhibition of PI3Kδ reduces the production of pro-inflammatory cytokines from IL-17-producing adaptive and innate-like lymphocytes and thereby inhibits downstream inflammatory and tissue remodeling responses. PI3Kδ-targeting may therefore represent a novel therapeutic avenue for the treatment of IL-17-mediated chronic inflammatory diseases such as psoriasis and SpA.


Asunto(s)
Antiinflamatorios/farmacología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fibroblastos/fisiología , Linfocitos/inmunología , Psoriasis/inmunología , Piridinas/farmacología , Quinolinas/farmacología , Espondilitis Anquilosante/inmunología , Sinoviocitos/fisiología , Células Th17/inmunología , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Femenino , Humanos , Inmunidad Innata , Interleucina-17/metabolismo , Masculino , Persona de Mediana Edad , Osteogénesis
19.
Arthritis Rheumatol ; 72(8): 1303-1313, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32243724

RESUMEN

OBJECTIVE: Interleukin-17A (IL-17A) and tumor necrosis factor (TNF) contribute to the pathogenesis of psoriatic arthritis (PsA). However, their functional relationship in PsA synovitis has not been fully elucidated. Additionally, although CD8+ T cells in PsA have been recognized via flow cytometry as a source of IL-17A production, it is not clear whether CD8+ T cells secrete IL-17A under more physiologically relevant conditions in the context from PsA synovitis. This study was undertaken to clarify the roles of IL-17A and TNF in the synovial fluid (SF) from patients with PsA and investigate the impact of CD8+ T cells on IL-17A production. METHODS: IL-17A+ T cells were identified by flow cytometry in SF samples from 20 patients with active PsA, blood samples from 22 treatment-naive patients with PsA, and blood samples from 22 healthy donors. IL-17A+ T cells were sorted from 12 PsA SF samples and stimulated using anti-CD3/anti-CD28 or phorbol myristate acetate (PMA) and ionomycin ex vivo, alone (n = 3) or together with autologous monocytes (n = 3) or PsA fibroblast-like synoviocytes (FLS) (n = 5-6). To evaluate the differential allogeneic effects of neutralizing IL-17A and TNF, SF CD4+ T cells and PsA FLS cocultures were also used (n = 5-6). RESULTS: Flow cytometry analyses of SF samples from patients with PsA showed IL-17A positivity for CD4+ and CD8+ T cells (IL-17A, median 0.71% [interquartile range 0.35-1.50%] in CD4+ cells; median 0.44% [interquartile range 0.17-1.86%] in CD8+ T cells). However, only CD4+ T cells secreted IL-17A after anti-CD3/anti-CD28 activation, when cultured alone and in cocultures with PsA monocytes or PsA FLS (each P < 0.05). Remarkably, CD8+ T cells only secreted IL-17A after 4- or 72-hour stimulation with PMA/ionomycin. Anti-IL-17A and anti-TNF treatments both inhibited PsA synovitis ex vivo. Neutralizing IL-17A strongly inhibited IL-6 (P < 0.05) and IL-1ß (P < 0.01), while anti-TNF treatment was more potent in reducing matrix metalloproteinase 3 (MMP-3) (P < 0.05) and MMP-13. CONCLUSION: CD8+ T cells, in contrast to CD4+ T cells, in SF specimens obtained from PsA patients did not secrete IL-17A following T cell receptor activation. Overlapping, but distinct, effects at the level of inflammatory cytokines and MMPs were found after neutralizing IL-17A or TNF ex vivo in a human model of PsA synovitis.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Interleucina-17/biosíntesis , Receptores de Antígenos de Linfocitos T/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Artritis Psoriásica/tratamiento farmacológico , Artritis Psoriásica/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Técnicas de Cultivo de Célula , Femenino , Citometría de Flujo , Humanos , Ionomicina/farmacología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Receptores de Antígenos de Linfocitos T/inmunología , Líquido Sinovial , Sinoviocitos/efectos de los fármacos , Sinoviocitos/inmunología , Sinovitis/tratamiento farmacológico , Sinovitis/inmunología , Acetato de Tetradecanoilforbol/farmacología
20.
Ann Rheum Dis ; 79(5): 595-604, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32253184

RESUMEN

OBJECTIVES: Bimekizumab selectively neutralises both interleukin (IL)-17A and IL-17F. We report efficacy and safety in a phase IIb dose-ranging study in patients with active ankylosing spondylitis (AS). METHODS: Adults with AS (fulfilling modified New York criteria) were randomised 1:1:1:1:1 to bimekizumab 16 mg, 64 mg, 160 mg, 320 mg or placebo every 4 weeks for 12 weeks (double-blind period). At week 12, patients receiving bimekizumab 16 mg, 64 mg or placebo were re-randomised 1:1 to bimekizumab 160 mg or 320 mg every 4 weeks to week 48; other patients continued on their initial dose (dose-blind period). The primary end point was Assessment of SpondyloArthritis international Society (ASAS) 40 response at week 12 (non-responder imputation (NRI) for missing data). RESULTS: 303 patients were randomised: bimekizumab 16 mg (n=61), 64 mg (n=61), 160 mg (n=60), 320 mg (n=61) or placebo (n=60). At week 12, significantly more bimekizumab-treated patients achieved ASAS40 vs placebo (NRI: 29.5%-46.7% vs 13.3%; p<0.05 all comparisons; OR vs placebo 2.6-5.5 (95% CI 1.0 to 12.9)). A significant dose-response was observed (p<0.001). The primary end point was supported by all secondary efficacy outcomes. At week 48, 58.6% and 62.3% of patients receiving bimekizumab 160 and 320 mg throughout the study achieved ASAS40, respectively (NRI); similar ASAS40 response rates were observed in re-randomised patients. During the double-blind period, treatment-emergent adverse events occurred in 26/60 (43.3%) patients receiving placebo and 92/243 (37.9%) receiving bimekizumab. CONCLUSIONS: Bimekizumab provided rapid and sustained improvements in key outcome measures in patients with active AS, with no unexpected safety findings versus previous studies. TRIAL REGISTRATION NUMBER: NCT02963506.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Interleucina-17/metabolismo , Espondilitis Anquilosante/tratamiento farmacológico , Adulto , Biomarcadores/metabolismo , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Europa (Continente) , Femenino , Estudios de Seguimiento , Humanos , Internacionalidad , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Valores de Referencia , Medición de Riesgo , Índice de Severidad de la Enfermedad , Espondilitis Anquilosante/diagnóstico , Resultado del Tratamiento , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA