RESUMEN
The in vitro cytokinesis-block micronucleus (CBMN) assay is a widely used technique in radiobiology research, biological dosimetry, genotoxicity studies, and in vitro radiosensitivity testing. This cytogenetic method is based on the detection of micronuclei in binucleated cells resulting from chromosomal fragments lagging during cell division. Fresh whole blood samples are the most preferred sample type for the CBMN assay. However, the disadvantages of working with fresh blood samples include immediate processing after blood collection and the limited number of repeated analyses that can be performed without extra blood sampling. As the need for fresh blood samples can be logistically challenging, CBMN assay on cryopreserved whole blood samples would be of great advantage, especially in large-scale patient studies. This paper describes a protocol to freeze whole blood samples and to perform the CBMN assay on these frozen blood samples. Blood samples from healthy volunteers have been frozen and thawed at different time points and then, subjected to a modified micronucleus assay protocol. The results demonstrate that this optimized procedure allows the performance of the CBMN assay on frozen blood samples. The described cryopreservation protocol may also be very useful for other cytogenetic assays and a variety of functional assays requiring proliferating lymphocytes.
Asunto(s)
Citocinesis , Radiometría , Humanos , Pruebas de Micronúcleos/métodos , División Celular , Radiometría/métodos , Linfocitos , CriopreservaciónRESUMEN
Introduction: In radiology, low X-ray energies (<140 keV) are used to obtain an optimal image while in radiotherapy, higher X-ray energies (MeV) are used to eradicate tumor tissue. In radiation research, both these X-ray energies being used to extrapolate in vitro research to clinical practice. However, the energy deposition of X-rays depends on their energy spectrum, which might lead to changes in biological response. Therefore, this study compared the DNA damage response (DDR) in peripheral blood lymphocytes (PBLs) exposed to X-rays with varying beam quality, mean photon energy (MPE) and dose rate.Methods: The DDR was evaluated in peripheral blood lymphocytes (PBLs) by the ɣ-H2AX foci assay, the cytokinesis-block micronucleus assay and an SYTOX-based cell death assay, combined with specific cell death inhibitors. Cell cultures were irradiated with a 220 kV X-ray research cabinet (SARRP, X-Strahl) or a 6 MV X-ray linear accelerator (Elekta Synergy). Three main physical parameters were investigated: beam quality (V), MPE (eV) and dose rate (Gy/min). Additional copper (Cu) filtration caused variation in the MPE (78 keV, 94 keV, 118 keV) at SARRP; dose rates were varied by adjusting tube current for 220 kV X-rays (0.33-3 Gy/min) or water-phantom depth in the 6 MV set-up (3-6 Gy/min).Results: The induction of chromosomal damage and initial (30 min) DNA double-stranded breaks (DSBs) were significantly higher for 220 kV X-rays compared to 6 MV X-rays, while cell death induction was similar. Specific cell death inhibitors for apoptosis, necroptosis and ferroptosis were not capable of blocking cell death after irradiation using low or high-energy X-rays. Additional Cu filtration increased the MPE, which significantly decreased the amount of chromosomal damage and DSBs. Within the tested ranges no specific effects of dose rate variation were observed.Conclusion: The DDR in PBLs is influenced by the beam quality and MPE. This study reinforces the need for consideration and inclusion of all physical parameters in radiation-related studies.
Asunto(s)
Daño del ADN , Linfocitos , Rayos X , Radiografía , Linfocitos/efectos de la radiación , Reparación del ADN , Relación Dosis-Respuesta en la RadiaciónRESUMEN
Proton therapy is of great interest to pediatric cancer patients because of its optimal depth dose distribution. In view of healthy tissue damage and the increased risk of secondary cancers, we investigated DNA damage induction and repair of radiosensitive hematopoietic stem and progenitor cells (HSPCs) exposed to therapeutic proton and photon irradiation due to their role in radiation-induced leukemia. Human CD34+ HSPCs were exposed to 6 MV X-rays, mid- and distal spread-out Bragg peak (SOBP) protons at doses ranging from 0.5 to 2 Gy. Persistent chromosomal damage was assessed with the micronucleus assay, while DNA damage induction and repair were analyzed with the γ-H2AX foci assay. No differences were found in induction and disappearance of γ-H2AX foci between 6 MV X-rays, mid- and distal SOBP protons at 1 Gy. A significantly higher number of micronuclei was found for distal SOBP protons compared to 6 MV X-rays and mid- SOBP protons at 0.5 and 1 Gy, while no significant differences in micronuclei were found at 2 Gy. In HSPCs, mid-SOBP protons are as damaging as conventional X-rays. Distal SOBP protons showed a higher number of micronuclei in HSPCs depending on the radiation dose, indicating possible changes of the in vivo biological response.
Asunto(s)
Terapia de Protones , Niño , Humanos , Terapia de Protones/efectos adversos , Protones , Relación Dosis-Respuesta en la Radiación , Efectividad Biológica Relativa , Daño del ADN , Células Madre Hematopoyéticas , Reparación del ADNRESUMEN
BACKGROUND: Long-term drug evaluation heavily relies upon rodent models. Drug discovery methods to reduce animal models in oncology may include three-dimensional (3D) cellular systems that take into account tumor microenvironment (TME) cell types and biomechanical properties. METHODS: In this study we reconstructed a 3D tumor using an elastic polymer (acrylate-endcapped urethane-based poly(ethylene glycol) (AUPPEG)) with clinical relevant stiffness. Single cell suspensions from low-grade serous ovarian cancer (LGSOC) patient-derived early passage cultures of cancer cells and cancer-associated fibroblasts (CAF) embedded in a collagen gel were introduced to the AUPPEG scaffold. After self-organization in to a 3D tumor, this model was evaluated by a long-term (> 40 days) exposure to a drug combination of MEK and HSP90 inhibitors. The drug-response results from this long-term in vitro model are compared with drug responses in an orthotopic LGSOC xenograft mouse model. RESULTS: The in vitro 3D scaffold LGSOC model mimics the growth ratio and spatial organization of the LGSOC. The AUPPEG scaffold approach allows to test new targeted treatments and monitor long-term drug responses. The results correlate with those of the orthotopic LGSOC xenograft mouse model. CONCLUSIONS: The mechanically-tunable scaffolds colonized by a three-dimensional LGSOC allow long-term drug evaluation and can be considered as a valid alternative to reduce, replace and refine animal models in drug discovery.
RESUMEN
In the case of a radiological or nuclear event, biological dosimetry can be an important tool to support clinical decision-making. During a nuclear event, individuals might be exposed to a mixed field of neutrons and photons. The composition of the field and the neutron energy spectrum influence the degree of damage to the chromosomes. During the transatlantic BALANCE project, an exposure similar to a Hiroshima-like device at a distance of 1.5 km from the epicenter was simulated, and biological dosimetry based on dicentric chromosomes was performed to evaluate the participants ability to discover unknown doses and to test the influence of differences in neutron spectra. In a first step, calibration curves were established by irradiating blood samples with 5 doses in the range of 0-4 Gy at two different facilities in Germany (Physikalisch-Technische Bundesanstalt [PTB]) and the USA (the Columbia IND Neutron Facility [CINF]). The samples were sent to eight participating laboratories from the RENEB network and dicentric chromosomes were scored by each participant. Next, blood samples were irradiated with 4 blind doses in each of the two facilities and sent to the participants to provide dose estimates based on the established calibration curves. Manual and semiautomatic scoring of dicentric chromosomes were evaluated for their applicability to neutron exposures. Moreover, the biological effectiveness of the neutrons from the two irradiation facilities was compared. The calibration curves from samples irradiated at CINF showed a 1.4 times higher biological effectiveness compared to samples irradiated at PTB. For manual scoring of dicentric chromosomes, the doses of the test samples were mostly successfully resolved based on the calibration curves established during the project. For semiautomatic scoring, the dose estimation for the test samples was less successful. Doses >2 Gy in the calibration curves revealed nonlinear associations between dose and dispersion index of the dicentric counts, especially for manual scoring. The differences in the biological effectiveness between the irradiation facilities suggested that the neutron energy spectrum can have a strong impact on the dicentric counts.
Asunto(s)
Neutrones , Humanos , AlemaniaRESUMEN
Even though a detailed understanding of the proliferative characteristics of T lymphocytes is imperative in many research fields, prior studies have never reached a consensus on these characteristics, and on the corresponding cell cycle kinetics specifically. In this study, the general proliferative response of human T lymphocytes to phytohaemagglutinin (PHA) stimulation was characterized using a carboxyfluorescein succinimidyl ester-based flow cytometric assay. We were able to determine when PHA-stimulated T lymphocytes complete their first division, the proportion of cells that initiate proliferation, the subsequent division rate of the cells, and the impact of irradiation on these proliferative properties. Next, we accurately visualized the cell cycle progression of dividing T lymphocytes cultured in whole blood using an adapted 5-ethynyl-2'-deoxyuridine pulse-chase method. Furthermore, through multiple downstream analysis methods, we were able to make an estimation of the corresponding cell cycle kinetics. We also visualized the impact of X-rays on the progression of the cells through the cell cycle. Our results showed dose-dependent G2 arrest after exposure to irradiation, and a corresponding delay in G1 phase-entry of the cells. In conclusion, utilizing various flow cytometric assays, we provided valuable information on T lymphocyte proliferation characteristics starting from first division to fully dividing cells.
Asunto(s)
Activación de Linfocitos , Linfocitos T , Ciclo Celular , Humanos , Cinética , Linfocitos/metabolismo , Fitohemaglutininas/metabolismo , Fitohemaglutininas/farmacologíaRESUMEN
(1) Background: Modulated electro-hyperthermia (mEHT) is a mild to moderate, capacitive-coupled heating technology that uses amplitude modulation to enhance the cell-killing effects of the treatment. We present three year survival results and a cost effectiveness analysis from an ongoing randomised controlled Phase III trial involving 210 participants evaluating chemoradiotherapy (CRT) with/without mEHT, for the management of locally advanced cervical cancer (LACC) in a resource constrained setting (Ethics Approval: M120477/M704133; ClinicalTrials.gov ID: NCT033320690). (2) Methods: We report hazard ratios (HR); odds ratio (OR), and 95% confidence intervals (CI) for overall survival and disease free survival (DFS) at two and three years in the ongoing study. Late toxicity, quality of life (QoL), and a cost effectiveness analysis (CEA) using a Markov model are also reported. (3) Results: Disease recurrence at two and three years was significantly reduced by mEHT (HR: 0.67, 95%CI: 0.48-0.93, p = 0.017; and HR: 0.70, 95%CI: 0.51-0.98, p = 0.035; respectively). There were no significant differences in late toxicity between the groups, and QoL was significantly improved in the mEHT group. In the CEA, mEHT + CRT dominated the model over CRT alone. (4) Conclusions: CRT combined with mEHT improves QoL and DFS rates, and lowers treatment costs, without increasing toxicity in LACC patients, even in resource-constrained settings.
RESUMEN
Ferroptosis induction is an emerging strategy to treat cancer and contrast the tricky issue of chemoresistance, which can arise towards apoptosis. This work elucidates the anticancer mechanisms evoked by perillaldehyde, a monoterpenoid isolated from Ammodaucus leucotrichus Coss. & Dur. We investigated and characterized its antileukemic potential in vitro, disclosing its ability to trigger ferroptosis. Specifically, perillaldehyde induced lipid peroxidation, decreased glutathione peroxidase 4 protein expression, and depleted intracellular glutathione on HL-60 promyelocytic leukemia cells. Besides, it stimulated the active secretion of ATP, one of the most crucial events in the induction of efficient anticancer response, prompting further studies to disclose its possible nature as an immunogenic cell death inducer. To preliminarily assess the clinical relevance of perillaldehyde, we tested its ability to induce cell death on patient-derived acute myeloid leukemia biopsies, recording a similar mechanism of action and potency compared to HL-60 cells. To round the study off, we tested its selectivity towards tumor cells and disclosed lower toxicity on normal cells compared to both HL-60 and acute myeloid leukemia biopsies. Altogether, these data depict a favorable risk-benefit profile for perillaldehyde and reveal its peculiar antileukemic potential, which qualifies this natural product to proceed further through the drug development pipeline.
Asunto(s)
Ferroptosis , Leucemia Mieloide Aguda , Humanos , Línea Celular Tumoral , Monoterpenos/uso terapéutico , Leucemia Mieloide Aguda/metabolismoRESUMEN
The radiosensitivity of haematopoietic stem and progenitor cells (HSPCs) to neutron radiation remains largely underexplored, notwithstanding their potential role as target cells for radiation-induced leukemogenesis. New insights are required for radiation protection purposes, particularly for aviation, space missions, nuclear accidents and even particle therapy. In this study, HSPCs (CD34+CD38+ cells) were isolated from umbilical cord blood and irradiated with 60Co γ-rays (photons) and high energy p(66)/Be(40) neutrons. At 2 h post-irradiation, a significantly higher number of 1.28 ± 0.12 γ-H2AX foci/cell was observed after 0.5 Gy neutrons compared to 0.84 ± 0.14 foci/cell for photons, but this decreased to similar levels for both radiation qualities after 18 h. However, a significant difference in late apoptosis was observed with Annexin-V+/PI+ assay between photon and neutron irradiation at 18 h, 43.17 ± 6.10% versus 55.55 ± 4.87%, respectively. A significant increase in MN frequency was observed after both 0.5 and 1 Gy neutron irradiation compared to photons illustrating higher levels of neutron-induced cytogenetic damage, while there was no difference in the nuclear division index between both radiation qualities. The results point towards a higher induction of DNA damage after neutron irradiation in HSPCs followed by error-prone DNA repair, which contributes to genomic instability and a higher risk of leukemogenesis.
Asunto(s)
Daño del ADN/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Neutrones/efectos adversos , Células Cultivadas , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Células Madre Hematopoyéticas/metabolismo , Humanos , Transferencia Lineal de Energía , Pruebas de MicronúcleosRESUMEN
PURPOSE: The cytokinesis-block micronucleus (MN) assay is a widely used technique in basic radiobiology research, human biomonitoring studies and in vitro radiosensitivity testing. Fresh whole blood cultures are commonly used for these purposes, but immediate processing of fresh samples can be logistically challenging. Therefore, we aimed at establishing a protocol for the MN assay on cryopreserved whole blood, followed by a thorough evaluation of the reliability of this assay for use in radiosensitivity assessment in patients. MATERIALS AND METHODS: Whole blood samples of 20 healthy donors and 4 patients with a primary immunodeficiency disease (PID) were collected to compare the results obtained with the MN assay performed on fresh versus cryopreserved whole blood samples. MN yields were scored after irradiation with 220 kV X-rays (dose rate 3 Gy/min), with doses ranging from 0.5-2 Gy. RESULTS: The application of the MN assay on cryopreserved blood samples was successful in all analyzed samples. The radiation-induced MN and NDI scores in fresh and cryopreserved blood cultures were found to be similar. Acceptable inter-individual and intra-individual variabilities in MN yields were observed. Repeated analysis of cryopreserved blood cultures originating from the same blood sample, thawed at different time points, revealed that MN values remain stable for cryopreservation periods up to one year. Finally, radiosensitive patients were successfully identified using the MN assay on cryopreserved samples. CONCLUSIONS: To our knowledge, this study is the first report of the successful use of cryopreserved whole blood samples for application of the MN assay. The data presented here demonstrate that the MN assay performed on cryopreserved whole blood is reliable for radiosensitivity testing. Our results also support its wider use in epidemiological, biomonitoring and genotoxicity studies. The presented method of cryopreservation of blood samples might also benefit other assays.
Asunto(s)
Células Sanguíneas/citología , Células Sanguíneas/efectos de la radiación , Criopreservación , Citocinesis/genética , Citocinesis/efectos de la radiación , Femenino , Rayos gamma/efectos adversos , Humanos , Masculino , Pruebas de Micronúcleos , Tolerancia a RadiaciónRESUMEN
The cytokinesis-block micronucleus (CBMN) assay is a standardized method used for genotoxicity studies. Conventional whole blood cultures (WBC) are often used for this assay, although the assay can also be performed on isolated peripheral blood mononuclear cell (PBMC) cultures. However, the standardization of a protocol for the PBMC CBMN assay has not been investigated extensively. The aim of this study was to optimize a reliable CBMN assay protocol for fresh and cryopreserved peripheral blood mononuclear cells (PBMCS), and to compare micronuclei (MNi) results between WBC and PBMC cultures. The G0 CBMN assay was performed on whole blood, freshly isolated, and cryopreserved PBMCS from healthy human blood samples and five radiosensitive patient samples. Cells were exposed to 220 kV X-ray in vitro doses ranging from 0.5 to 2 Gy. The optimized PBMC CBMN assay showed adequate repeatability and small inter-individual variability. MNi values were significantly higher for WBC than for fresh PBMCS. Additionally, cryopreservation of PBMCS resulted in a significant increase of MNi values, while different cryopreservation times had no significant impact. In conclusion, our standardized CBMN assay on fresh and cryopreserved PBMCS can be used for genotoxicity studies, biological dosimetry, and radiosensitivity assessment.
RESUMEN
Background: A Phase III randomized controlled trial investigating the addition of modulated electro-hyperthermia (mEHT) to chemoradiotherapy for locally advanced cervical cancer patients is being conducted in South Africa (Human Research Ethics Committee approval: M1704133; ClincialTrials.gov ID: NCT03332069). Two hundred and ten participants were randomized and 202 participants were eligible for six month local disease control evaluation. Screening 18F-FDG PET/CT scans were conducted and repeated at six months post-treatment. Significant improvement in local control was reported in the mEHT group and complete metabolic resolution (CMR) of extra-pelvic disease was noted in some participants. We report on an analysis of the participants with CMR of disease inside and outside the radiation field. Method: Participants were included in this analysis if nodes outside the treatment field (FDG-uptake SUV>2.5) were visualized on pre-treatment scans and if participants were evaluated by 18F-FDG PET/CT scans at six months post-treatment. Results: One hundred and eight participants (mEHT: HIV-positive n = 25, HIV-negative n = 29; Control Group: HIV-positive n = 26, HIV-negative n = 28) were eligible for analysis. There was a higher CMR of all disease inside and outside the radiation field in the mEHT Group: n = 13 [24.1%] than the control group: n = 3 [5.6%] (Chi squared, Fisher's exact: p = 0.013) with no significant difference in the extra-pelvic response to treatment between the HIV-positive and -negative participants of each group. Conclusion: The CMR of disease outside the radiation field at six months post-treatment provides evidence of an abscopal effect which was significantly associated with the addition of mEHT to treatment protocols. This finding is important as the combined synergistic use of radiotherapy with mEHT could broaden the scope of radiotherapy to include systemic disease.
RESUMEN
Introduction: HIV infection is associated with increased treatment-related toxicity and worse outcomes in locally advanced cervical cancer patients (LACC), especially in resource-constrained settings. Local control (LC) in a phase III randomized, controlled trial investigating modulated electro-hyperthermia (mEHT) on LACC patients in South Africa (ethics registration: M120477/M190295), was significantly higher in participants randomized to receive chemoradiotherapy (CRT) with mEHT compared to CRT alone (stratum: HIV status, accounting for age and stage). This analysis investigates whether mEHT adds to the toxicity profile of CRT in HIV-positive LACC participants.Methods: Inclusion criteria: signed informed consent; International Federation of Gynecology and Obstetrics stages IIB to IIIB squamous cell carcinoma of the cervix; HIV-positive patients: CD4 count >200 cell/µL/on antiretroviral treatment for >6 months; eligible for CRT with radical intent. Recruitment: January 2014 to November 2017 (ClinicalTrials.gov: NCT03332069). Acute toxicity (evaluated using CTCAE v4 criteria) and quality of life (according to EORTC forms) in 206 participants randomized for treatment were evaluated alongside the LC results to determine safety and efficacy in HIV-positive participants.Results: Compliance to mEHT treatment was high (97% completed ≥8 treatments) with no significant differences in CRT-related toxicity between treatment groups or between HIV-positive and -negative participants. Adverse events attributed to mEHT were minor, even in obese patients, and did not affect CRT compliance. Participants treated with mEHT reported improved fatigue, pain, emotional and cognitive functioning.Conclusion: mEHT did not cause unexpected CRT-related toxicities and is a safe treatment modality for HIV-positive patients, with minor limitations regarding body weight, even in a low-resource setting.
Asunto(s)
Infecciones por VIH/terapia , Hipertermia Inducida/métodos , Calidad de Vida/psicología , Neoplasias del Cuello Uterino/terapia , Adulto , Femenino , Humanos , Persona de Mediana EdadRESUMEN
Purpose: Based on clinical and molecular data, breast cancer is a heterogeneous disease. Breast cancers that have no expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) are defined as triple negative breast cancers (TNBCs); luminal cancers have different expressions of ER, PR and/or HER2. TNBCs are frequently linked with advanced disease, poor prognosis and occurrence in young African women, and about 15% of the cases are associated with germline BRCA1/2 mutations. Since radiotherapy is utilized as a principle treatment in the management of TNBC, we aimed to investigate the chromosomal instability and radiosensitivity of lymphocytes in TNBC patients compared to luminal breast cancer patients and healthy controls using the micronucleus (MN) assay. The effect of mutations in breast cancer susceptibility genes on chromosomal radiosensitivity was also evaluated.Methods: Chromosomal radiosensitivity was evaluated in the G0 (83 patients and 90 controls) and S/G2 (34 patients and 17 controls) phase of the cell cycle by exposing blood samples from all patients and controls to 2 and 4 Gy ionizing radiation (IR).Results: In the G0 MN assay, the combined cohort of all breast cancer, TNBC and luminal patients' exhibit significantly elevated spontaneous MN values compared to controls indicating chromosomal instability. Chromosomal radiosensitivity is also significantly elevated in the combined cohort of all breast cancer patients compared to controls. The TNBC patients, however, do not exhibit enhanced chromosomal radiosensitivity. Similarly, in the S/G2 phase, 76% of TNBC patients do not show enhanced chromosomal radiosensitivity compared to the controls. In both the G0 and S/G2 phase, luminal breast cancer patients demonstrate a shift toward chromosomal radiosensitivity compared to TNBC patients and controls.Conclusions: The observations of the MN assay suggest increased chromosomal instability and chromosomal radiosensitivity in South African breast cancer patients. However, in TNBC patients, the irradiated MN values are not elevated. Our results suggest that the healthy lymphocytes in TNBC patients could handle higher doses of IR.
Asunto(s)
Inestabilidad Cromosómica , Cromosomas/efectos de la radiación , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Adulto , Proteína BRCA1/genética , Estudios de Casos y Controles , Ciclo Celular , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Pruebas de Micronúcleos , Persona de Mediana Edad , Mutación , Tolerancia a Radiación , Radiación IonizanteRESUMEN
BACKGROUND: The global burden of cervical cancer remains high with the highest morbidity and mortality rates reported in developing countries. Hyperthermia as a chemo- and radiosensitiser has shown to improve treatment outcomes. This is an analysis of the local control results at six months post-treatment of patients enrolled in an ongoing study investigating the effects of the addition of modulated electro-hyperthermia (mEHT) to chemoradiotherapy for the treatment of HIV-positive and -negative cervical cancer patients in a low-resource setting. METHODS: This ongoing Phase III randomised controlled trial, conducted at a state hospital in Johannesburg, South Africa, was registered with the appropriate ethics committee. After signing an informed consent, participants with FIGO stages IIB to IIIB squamous cell carcinoma of the cervix were randomised to receive chemoradiotherapy with/without mEHT using a secure online random-sampling tool (stratum: HIV status) accounting for age and stage. Reporting physicians were blind to treatment allocation. HIV-positive participants on antiretroviral treatment, or with a CD4 count >200cell/µL were included. mEHT was administered 2/weekly immediately before external beam radiation. The primary end point is local disease control (LDC) and secondary endpoints are toxicity; quality of life analysis; and two year survival. We report on six month LDC, including nodes visualised in the radiation field on 18F-FDG PET/CT (censored for six month survival), and six month local disease free survival (LDFS) (based on intention to treat). Trial status: Recruitment closed (ClinicalTrials.gov: NCT03332069). RESULTS: 271 participants were recruited between January 2014 and November 2017, of which 210 were randomised for trial and 202 were available for analysis at six months post-treatment (mEHT: n = 101; Control: n = 101). Six month LDFS was higher in the mEHT Group (n = 39[38.6%]), than in the Control Group (n = 20[19.8%]); p = 0.003). LDC was also higher in the mEHT Group (n = 40[45.5%]) than the Control Group (n = 20[24.1%]); (p = 0.003). CONCLUSION: Our results show that mEHT is effective as a chemo-radiosensitiser for cervical cancer, even in high risk a patients and resource-constrained settings.
Asunto(s)
Quimioradioterapia , Hipertermia Inducida/métodos , Neoplasias del Cuello Uterino/terapia , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , VIH/patogenicidad , Seropositividad para VIH/virología , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Resultado del Tratamiento , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virologíaRESUMEN
Literature reports increased FDG nodal uptake in HIV-positive patients. Our aim is to identify differences in presentation and characteristics of FDG-avid lymph nodes between HIV-positive and HIV-negative locally advanced cervical cancer (LACC) patients in our clinical setting. We evaluated 250 pre-treatment 18F-FDG PET/CT imaging studies from women screened for a phase III randomised controlled trial investigating modulated electro-hyperthermia as a radiosensitiser (Ethics approval: M120477). The number of nodes; size; maximum standardised uptake value (SUVmax); symmetry; and relationship between nodal size and SUVmax uptake, were assessed by region and by HIV status. In total, 1314 nodes with a SUVmax ≥ 2.5 were visualised. Of 128(51%) HIV-positive participants, 82% were on antiretroviral therapy (ART) and 10 had a CD4 count <200 cells/µL. Overall pattern of presentation and nodal characteristics were similar between HIV-positive and -negative groups and the uniformity in presentation of the nodes draining the cervix strongly suggests these nodes may be attributed to malignancy rather than HIV infection. Novel findings: HIV infection is associated with: >four nodes visualised in the neck, symmetrical inguinal lymph nodes, increased rates of supraclavicular node visualisation; FDG-avid axillary nodes were more common, but not exclusive, in HIV-positive participants. 18F-FDG PET/CT is a reliable staging method for LACC in HIV-positive patients who are not in acute stages of HIV infection, have a CD4 count >200 cells/µL, and/or are on ART and there is a potential risk of underestimating metastatic spread by attributing increased nodal metabolic activity to HIV infection in these patients.
Asunto(s)
Seropositividad para VIH/complicaciones , Ganglios Linfáticos/diagnóstico por imagen , Metástasis Linfática/diagnóstico por imagen , Estadificación de Neoplasias/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias del Cuello Uterino/complicaciones , Neoplasias del Cuello Uterino/diagnóstico por imagen , Adulto , Anciano , Quimioradioterapia , Femenino , Humanos , Hipertermia Inducida , Ganglios Linfáticos/patología , Persona de Mediana Edad , Sudáfrica , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapiaRESUMEN
Fanconi Anaemia (FA) is an autosomal recessive disorder characterised by defects in DNA repair, associated with chromosomal instability and cellular hypersensitivity to DNA cross-linking agents such as mitomycin C (MMC). The FA repair pathway involves complex DNA repair mechanisms crucial for genomic stability. Deficiencies in DNA repair genes give rise to chromosomal radiosensitivity. FA patients have shown increased clinical radiosensitivity by exhibiting adverse normal tissue side-effects. The study aimed to investigate chromosomal radiosensitivity of homozygous and heterozygous carriers of FA mutations using three micronucleus (MN) assays. The G0 and S/G2MN assays are cytogenetic assays to evaluate DNA damage induced by ionising radiation in different phases of the cell cycle. The MMC MN assay detects DNA damage induced by a crosslinking agent in the G0 phase. Patients with a clinical diagnosis of FA and their parents were screened for the complete coding region of 20 FA genes. Blood samples of all FA patients and parents were exposed to ionising radiation of 2 and 4Gy. Chromosomal radiosensitivity was evaluated in the G0 and S/G2 phase. Most of our patients were homozygous for the founder mutation FANCG c.637_643delTACCGCC; p.(Tyr213Lysfs*6) while one patient was compound heterozygous for FANCG c.637_643delTACCGCC and FANCG c.1379G > A, p.(Gly460Asp), a novel missense mutation. Another patient was compound heterozygous for two deleterious FANCA mutations. In FA patients, the G0- and S/G2-MN assays show significantly increased chromosomal radiosensitivity and genomic instability. Moreover, chromosomal damage was significantly elevated in MMC treated FA cells. We also observed an increase in chromosomal radiosensitivity and genomic instability in the parents using 3 assays. The effect was significant using the MMC MN assay. The MMC MN assay is advantageous as it is less labour intense, time effective and has potential as a reliable alternative method for detecting FA patients from parents and controls.
Asunto(s)
Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Pruebas de Micronúcleos , Mitomicina/farmacología , Radiación Ionizante , Adolescente , Adulto , Estudios de Casos y Controles , Ciclo Celular , Niño , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Análisis Mutacional de ADN , Reparación del ADN , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Humanos , Masculino , Persona de Mediana Edad , Mutación , Tolerancia a Radiación/genética , Adulto JovenRESUMEN
PURPOSE: Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. MATERIALS AND METHODS: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. RESULTS: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. CONCLUSIONS: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.
Asunto(s)
Bioensayo/métodos , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos/métodos , Garantía de la Calidad de Atención de Salud , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Bioensayo/normas , Europa (Continente) , Humanos , Linfocitos/efectos de la radiación , Monitoreo de Radiación/normas , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
PURPOSE: In the framework of the 'Realizing the European Network of Biodosimetry' (RENEB) project, two intercomparison exercises were conducted to assess the suitability of an optimized version of the cytokinesis-block micronucleus assay, and to evaluate the capacity of a large laboratory network performing biodosimetry for radiation emergency triages. Twelve European institutions participated in the first exercise, and four non-RENEB labs were added in the second one. MATERIALS AND METHODS: Irradiated blood samples were shipped to participating labs, whose task was to culture these samples and provide a blind dose estimate. Micronucleus analysis was performed by automated, semi-automated and manual procedures. RESULTS: The dose estimates provided by network laboratories were in good agreement with true administered doses. The most accurate estimates were reported for low dose points (≤ 0.94 Gy). For higher dose points (≥ 2.7 Gy) a larger variation in estimates was observed, though in the second exercise the number of acceptable estimates increased satisfactorily. Higher accuracy was achieved with the semi-automated method. CONCLUSION: The results of the two exercises performed by our network demonstrate that the micronucleus assay is a useful tool for large-scale radiation emergencies, and can be successfully implemented within a large network of laboratories.
Asunto(s)
Bioensayo/métodos , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos/métodos , Garantía de la Calidad de Atención de Salud , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Bioensayo/normas , Europa (Continente) , Humanos , Linfocitos/efectos de la radiación , Monitoreo de Radiación/normas , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Cervical cancer is the second most common cancer amongst South African women and is the leading cause of cancer-associated mortality in this region. Several international studies on radiationinduced DNA damage in lymphocytes of cervical cancer patients have remained inconclusive. Despite the high incidence of cervical cancer in South Africa, and the extensive use of radiotherapy to treat it, the chromosomal radiosensitivity of South African cervical cancer patients has not been studied to date. Since a high number of these patients are human immunodeficiency virus (HIV)positive, the effect of HIV infection on chromosomal radiosensitivity was also investigated. Blood samples from 35 cervical cancer patients (20 HIVnegative and 15 HIVpositive) and 20 healthy controls were exposed to Xrays at doses of 6 MV of 2 and 4 Gy in vitro. Chromosomal radiosensitivity was assessed using the micronucleus (MN) assay. MN scores were obtained using the Metafer 4 platform, an automated microscopic system. Three scoring methods of the MNScore module of Metafer were applied and compared. Cervical cancer patients had higher MN values than healthy controls, with HIVpositive patients having the highest MN values. Differences between groups were significant when using a scoring method that corrects for false positive and false negative MN. The present study suggested increased chromosomal radiosensitivity in HIV-positive South African cervical cancer patients.