Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783803

RESUMEN

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Asunto(s)
Bivalvos , Cardiidae , Leucemia , Neoplasias , Animales , Humanos , Cardiidae/genética , Evolución Clonal
2.
Science ; 380(6642): 283-293, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079675

RESUMEN

Tasmanian devils have spawned two transmissible cancer lineages, named devil facial tumor 1 (DFT1) and devil facial tumor 2 (DFT2). We investigated the genetic diversity and evolution of these clones by analyzing 78 DFT1 and 41 DFT2 genomes relative to a newly assembled, chromosome-level reference. Time-resolved phylogenetic trees reveal that DFT1 first emerged in 1986 (1982 to 1989) and DFT2 in 2011 (2009 to 2012). Subclone analysis documents transmission of heterogeneous cell populations. DFT2 has faster mutation rates than DFT1 across all variant classes, including substitutions, indels, rearrangements, transposable element insertions, and copy number alterations, and we identify a hypermutated DFT1 lineage with defective DNA mismatch repair. Several loci show plausible evidence of positive selection in DFT1 or DFT2, including loss of chromosome Y and inactivation of MGA, but none are common to both cancers. This study reveals the parallel long-term evolution of two transmissible cancers inhabiting a common niche in Tasmanian devils.


Asunto(s)
Evolución Molecular , Neoplasias Faciales , Marsupiales , Selección Genética , Animales , Neoplasias Faciales/clasificación , Neoplasias Faciales/genética , Neoplasias Faciales/veterinaria , Genoma , Marsupiales/genética , Filogenia
4.
Vet Rec ; 191(5): e1794, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35781651

RESUMEN

BACKGROUND: The canine transmissible venereal tumour (CTVT) is a contagious cancer spread by the direct transfer of living cancer cells. CTVT usually spreads during mating, manifesting as genital tumours. However, oronasal CTVT is also occasionally observed, and presumably arises through oronasal contact with genital CTVT tumours during sniffing and licking. METHODS: Given that sniffing and licking transmission behaviours may differ between sexes, we investigated whether oronasal CTVT shows sex disparity. RESULTS: Twenty-seven of 32 (84%) primary oronasal tumours in a CTVT tumour database occurred in males. In addition, 53 of 65 (82%) primary oronasal CTVT tumours reported in the published literature involved male hosts. These findings suggest that male dogs are at four to five times greater risk of developing primary oronasal CTVT than females. This disparity may be due to sex differences in licking and sniffing activity, perhaps also influenced by sex differences in CTVT accessibility for these behaviours. CONCLUSION: Although oronasal CTVT is rare, it should be considered as a possible diagnosis for oronasal tumours, particularly in male dogs.


Asunto(s)
Enfermedades de los Perros , Tumores Venéreos Veterinarios , Animales , Enfermedades de los Perros/diagnóstico , Perros , Femenino , Masculino , Tumores Venéreos Veterinarios/diagnóstico , Tumores Venéreos Veterinarios/epidemiología
5.
Nature ; 604(7906): 517-524, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418684

RESUMEN

The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.


Asunto(s)
Longevidad , Tasa de Mutación , Animales , Humanos , Longevidad/genética , Mamíferos/genética , Mutagénesis/genética , Mutación
6.
Mol Ecol ; 31(3): 719-722, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34918407

RESUMEN

Transmissible cancers are infectious malignant cell clones that spread among individuals through transfer of living cancer cells. Several such clones have been identified in various species of marine bivalve molluscs, including mussels, clams and cockles. These parasitic cell lineages cause a leukaemia-like disease called disseminated neoplasia, and are presumed to pass between hosts by ingestion of water-borne cancer cells during filter feeding. Although occasional cases of transmissible cancer had previously been identified in mussels of the genus Mytilus in Europe, the number of distinct clones affecting these animals, and their prevalence, was unknown. In this issue of Molecular Ecology, Hammel et al. (2021) present findings from a large-scale screen for transmissible cancer across 5907 European Mytilus mussels. Using a genotyping approach, Hammel et al. searched for signal of genetic chimerism, which can arise due to infection by transmissible cancer cells. The screen detected a previously identified globally distributed mussel transmissible cancer at very low prevalence, and found no evidence of additional contagious clones. A parallel histological screen additionally revealed low prevalence of a nontransmissible form of disseminated neoplasia. By quantifying the burden of disseminated neoplasia in European mussel populations, this study provides strong foundations for future work investigating the origins, evolution and impacts of transmissible cancers in mussels.


Asunto(s)
Mytilus , Neoplasias , Animales , Europa (Continente) , Humanos , Mytilus/genética
7.
Nat Commun ; 12(1): 6910, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824211

RESUMEN

Most cancers are characterized by the somatic acquisition of genomic rearrangements during tumour evolution that eventually drive the oncogenesis. Here, using multiplatform sequencing technologies, we identify and characterize a remarkable mutational mechanism in human hepatocellular carcinoma caused by Hepatitis B virus, by which DNA molecules from the virus are inserted into the tumour genome causing dramatic changes in its configuration, including non-homologous chromosomal fusions, dicentric chromosomes and megabase-size telomeric deletions. This aberrant mutational mechanism, present in at least 8% of all HCC tumours, can provide the driver rearrangements that a cancer clone requires to survive and grow, including loss of relevant tumour suppressor genes. Most of these events are clonal and occur early during liver cancer evolution. Real-time timing estimation reveals some HBV-mediated rearrangements occur as early as two decades before cancer diagnosis. Overall, these data underscore the importance of characterising liver cancer genomes for patterns of HBV integration.


Asunto(s)
Carcinoma Hepatocelular/genética , ADN Viral , Genoma Humano , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/virología , Regulación Neoplásica de la Expresión Génica , Humanos , Integración Viral , Secuenciación Completa del Genoma
9.
Nature ; 593(7859): 405-410, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33911282

RESUMEN

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Asunto(s)
Células Sanguíneas/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN/métodos , Músculo Liso/metabolismo , Mutación , Neuronas/metabolismo , Imagen Individual de Molécula/métodos , Células Madre/metabolismo , Enfermedad de Alzheimer/genética , Células Sanguíneas/citología , División Celular , Estudios de Cohortes , Colon/citología , Epitelio/metabolismo , Granulocitos/citología , Granulocitos/metabolismo , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso/citología , Mutagénesis , Tasa de Mutación , Neuronas/citología , Células Madre/citología
10.
PLoS Biol ; 18(11): e3000926, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232318

RESUMEN

Devil facial tumour 1 (DFT1) is a transmissible cancer clone endangering the Tasmanian devil. The expansion of DFT1 across Tasmania has been documented, but little is known of its evolutionary history. We analysed genomes of 648 DFT1 tumours collected throughout the disease range between 2003 and 2018. DFT1 diverged early into five clades, three spreading widely and two failing to persist. One clade has replaced others at several sites, and rates of DFT1 coinfection are high. DFT1 gradually accumulates copy number variants (CNVs), and its telomere lengths are short but constant. Recurrent CNVs reveal genes under positive selection, sites of genome instability, and repeated loss of a small derived chromosome. Cultured DFT1 cell lines have increased CNV frequency and undergo highly reproducible convergent evolution. Overall, DFT1 is a remarkably stable lineage whose genome illustrates how cancer cells adapt to diverse environments and persist in a parasitic niche.


Asunto(s)
Neoplasias Faciales/veterinaria , Marsupiales/genética , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/genética , Enfermedades de los Animales/transmisión , Animales , Variaciones en el Número de Copia de ADN , Evolución Molecular , Neoplasias Faciales/epidemiología , Neoplasias Faciales/genética , Femenino , Inestabilidad Genómica , Masculino , Filogenia , Tasmania/epidemiología , Acortamiento del Telómero/genética , Células Tumorales Cultivadas
11.
Nat Commun ; 11(1): 3059, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546718

RESUMEN

Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby 'selfish' positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades de los Perros/genética , Haplotipos , Tumores Venéreos Veterinarios/genética , Animales , Perros , Transferencia de Gen Horizontal , Filogenia , Polimorfismo Genético , Recurrencia , Selección Genética
12.
Nat Genet ; 52(3): 306-319, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32024998

RESUMEN

About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.


Asunto(s)
Carcinogénesis/genética , Reordenamiento Génico/genética , Genoma Humano/genética , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias/genética , Retroelementos/genética , Humanos , Neoplasias/patología
13.
Pediatr Pulmonol ; 54(12): 1948-1956, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31496123

RESUMEN

Several studies have shown that the airways of asthma patients contain higher diversity of bacteria and are enriched in pathogenic species. However, sampling the airways in children is challenging. Here we aimed to identify differences in the salivary bacterial composition between African Americans children with and without asthma. Saliva samples from 57 asthma cases and 57 healthy controls were analyzed by means of 16S ribosomal RNA amplicon profiling. Measurements of bacterial diversity and genus relative abundance were compared between cases and controls using the nonparametric Wilcoxon test and multivariate regression models. A total of five phyla and a mean of 56 genera were identified. Among them, 15 genera had a relative abundance greater than 1%, being Prevotella, Haemophilus, Streptococcus, and Veillonella the most abundant genera. Differences between cases and controls were found in terms of diversity, as well as in relative abundance for Streptococcus genus (13.0% in cases vs 18.3% in controls; P = .003) and Veillonella genus (11.1% in cases vs 8.0% in controls; P = .002). These differences remained significant after correction for multiple comparisons and when potential confounders were taken into account in logistic regression models. In conclusion, we identified changes in the salivary microbiota associated with asthma among African Americans.


Asunto(s)
Asma/microbiología , Microbiota/genética , Saliva/microbiología , Negro o Afroamericano/estadística & datos numéricos , Asma/epidemiología , Bacterias/genética , Niño , Femenino , Humanos , Masculino , ARN Ribosómico 16S/genética , Adulto Joven
14.
Science ; 365(6452)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31371581

RESUMEN

The canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by "metastasizing" between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.


Asunto(s)
Evolución Clonal/genética , Enfermedades de los Perros/clasificación , Enfermedades de los Perros/genética , Tumores Venéreos Veterinarios/clasificación , Tumores Venéreos Veterinarios/genética , Animales , Enfermedades de los Perros/epidemiología , Perros , Exosomas , Expresión Génica , Mutagénesis , Filogenia , Selección Genética , Tumores Venéreos Veterinarios/epidemiología
15.
Front Genet ; 10: 439, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156702

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is among the most aggressive histologic subtypes of kidney cancer, representing about 3% of all human cancers. Patients at stage IV have nearly 60% of mortality in 2-3 years after diagnosis. To date, most ccRCC studies have used DNA microarrays and targeted sequencing of a small set of well-established, commonly altered genes. An exception is the large multi-omics study of The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC), which identified new ccRCC genes based on whole exome-sequencing (WES) data, and molecular prognostic signatures based on transcriptomics, epigenetics and proteomics data. Applying WES to simultaneously interrogate virtually all exons in the human genome for somatic variation, here we analyzed the burden of coding somatic mutations in metastatic ccRCC primary tumors, and its association with patient mortality from cancer, in patients who received VEGF receptor-targeting drugs as the first-line therapy. To this end, we sequenced the exomes of ten tumor-normal pairs of ccRCC patient tissues from primary biopsies at >100× mean depth and called somatic coding variation. Mutation burden analysis prioritized 138 genes linked to patient mortality. A gene set enrichment analysis evidenced strong statistical support for the abundance of genes involved in the development of kidney cancer (p = 2.31 × 10-9) and carcinoma (p = 1.22 × 10-5), with 49 genes having direct links with kidney cancer according to the published records. Two of these genes, SIPA1L2 and EIF3A, demonstrated independent associations with mortality in TCGA-KIRC project data. Besides, three mutational signatures were found to be operative in the tumor exomes, one of which (COSMIC signature 12) has not been previously reported in ccRCC. Selection analysis yielded no detectable evidence of overall positive or negative selection, with the exome-wide number of nonsynonymous substitutions per synonymous site reflecting largely neutral tumor evolution. Despite the limited sample size, our results provide evidence for candidate genes where somatic mutation burden is tentatively associated with patient mortality in metastatic ccRCC, offering new potential pharmacological targets and a basis for further validation studies.

16.
Brief Bioinform ; 20(1): 77-88, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28968631

RESUMEN

The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important potential for furthering our understanding of the causes and evolution of cancer, and can provide insights of relevance for cancer prevention and treatment. In this review, we focus our attention on the mathematical models and computational techniques that have driven recent advances in the field.


Asunto(s)
Mutación , Neoplasias/genética , Teorema de Bayes , Biología Computacional , ADN de Neoplasias/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Modelos Genéticos , Modelos Estadísticos , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos
17.
Cancer Cell ; 33(4): 607-619.e15, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29634948

RESUMEN

Transmissible cancers are clonal lineages that spread through populations via contagious cancer cells. Although rare in nature, two facial tumor clones affect Tasmanian devils. Here we perform comparative genetic and functional characterization of these lineages. The two cancers have similar patterns of mutation and show no evidence of exposure to exogenous mutagens or viruses. Genes encoding PDGF receptors have copy number gains and are present on extrachromosomal double minutes. Drug screening indicates causative roles for receptor tyrosine kinases and sensitivity to inhibitors of DNA repair. Y chromosome loss from a male clone infecting a female host suggests immunoediting. These results imply that Tasmanian devils may have inherent susceptibility to transmissible cancers and present a suite of therapeutic compounds for use in conservation.


Asunto(s)
Neoplasias Faciales/veterinaria , Marsupiales/genética , Mutación , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Línea Celular Tumoral , Cromosomas de los Mamíferos/genética , Células Clonales/inmunología , Células Clonales/patología , Neoplasias Faciales/genética , Neoplasias Faciales/inmunología , Femenino , Dosificación de Gen , Edición Génica , Inmunidad , Masculino
18.
Open Biol ; 6(10)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27707895

RESUMEN

Streptococcus agalactiae or Group B Streptococcus (GBS) are opportunistic bacteria that can cause lethal sepsis in children and immuno-compromised patients. Their genome is a reservoir of mobile genetic elements that can be horizontally transferred. Among them, integrative and conjugative elements (ICEs) and the smaller integrative and mobilizable elements (IMEs) primarily reside in the bacterial chromosome, yet have the ability to be transferred between cells by conjugation. ICEs and IMEs are therefore a source of genetic variability that participates in the spread of antibiotic resistance. Although IMEs seem to be the most prevalent class of elements transferable by conjugation, they are poorly known. Here, we have studied a GBS-IME, termed IMESag-rpsI, which is widely distributed in GBS despite not carrying any apparent virulence trait. Analyses of 240 whole genomes showed that IMESag-rpsI is present in approximately 47% of the genomes, has a roughly constant size (approx. 9 kb) and is always integrated at a single location, the 3'-end of the gene encoding the ribosomal protein S9 (rpsI). Based on their genetic variation, several IMESag-rpsI types were defined (A-J) and classified in clonal complexes (CCs). CC1 was the most populated by IMESag-rpsI (more than 95%), mostly of type-A (71%). One CC1 strain (S. agalactiae HRC) was deep-sequenced to understand the rationale underlying type-A IMESag-rpsI enrichment in GBS. Thirteen open reading frames were identified, one of them encoding a protein (MobSag) belonging to the broadly distributed family of relaxases MOBV1 Protein MobSag was purified and, by a newly developed method, shown to cleave DNA at a specific dinucleotide. The S. agalactiae HRC-IMESag-rpsI is able to excise from the chromosome, as shown by the presence of circular intermediates, and it harbours a fully functional mobilization module. Further, the mobSag gene encoded by this mobile element is able to promote plasmid transfer among pneumococcal strains, suggesting that MobSag facilitates the spread of IMESag-rpsI and that this spread would explain the presence of the same IMESag-rpsI type in GBS strains belonging to different CCs.


Asunto(s)
Clonación Molecular/métodos , ADN Nucleotidiltransferasas/genética , Secuencias Repetitivas Esparcidas , Streptococcus agalactiae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , ADN Nucleotidiltransferasas/metabolismo , Transferencia de Gen Horizontal , Variación Genética , Sistemas de Lectura Abierta , Proteína Ribosómica S9 , Proteínas Ribosómicas/genética , Análisis de Secuencia de ADN , Streptococcus agalactiae/enzimología
19.
Bioinformatics ; 31(17): 2870-3, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25953799

RESUMEN

UNLABELLED: We introduce IonGAP, a publicly available Web platform designed for the analysis of whole bacterial genomes using Ion Torrent sequence data. Besides assembly, it integrates a variety of comparative genomics, annotation and bacterial classification routines, based on the widely used FASTQ, BAM and SRA file formats. Benchmarking with different datasets evidenced that IonGAP is a fast, powerful and simple-to-use bioinformatics tool. By releasing this platform, we aim to translate low-cost bacterial genome analysis for microbiological prevention and control in healthcare, agroalimentary and pharmaceutical industry applications. AVAILABILITY AND IMPLEMENTATION: IonGAP is hosted by the ITER's Teide-HPC supercomputer and is freely available on the Web for non-commercial use at http://iongap.hpc.iter.es. CONTACT: mcolesan@ull.edu.es or cflores@ull.edu.es SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN , Programas Informáticos , Bases de Datos Genéticas , Genómica/métodos , Almacenamiento y Recuperación de la Información , Anotación de Secuencia Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...