Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Genome Res ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981681

RESUMEN

Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in approximately 15% of early-stage cancers and 30% of late-stage cancers. EcDNAs drive tumor formation, evolution, and drug resistance by dynamically modulating oncogene copy-number and rewiring gene-regulatory networks. Elucidating the genomic architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective therapies. Paired-end short-read (Illumina) sequencing and mapping have been utilized to represent ecDNA amplifications using a breakpoint graph, where the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint graph have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are intrinsically limited in the identification of breakpoints, phasing together of complex rearrangements and internal duplications, and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural variants and are more likely to span rearranged or duplicated regions. Here, we propose CoRAL (Complete Reconstruction of Amplifications with Long reads), for reconstructing ecDNA architectures using long-read data. CoRAL reconstructs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction, explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive simulations and 10 datasets from previously-characterized cell lines as compared to previous short and long-read based tools. As long-read usage becomes wide-spread, we anticipate that CoRAL will be a valuable tool for profiling the landscape and evolution of focal amplifications in tumors.

2.
Elife ; 122024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896472

RESUMEN

Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.


Asunto(s)
Daño del ADN , Reparación del ADN , Neoplasias , Regulación hacia Arriba , Humanos , Reparación del ADN/genética , Neoplasias/genética , Neoplasias/inmunología , Regulación Neoplásica de la Expresión Génica , Transcripción Genética
3.
Methods Mol Biol ; 2744: 247-265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683324

RESUMEN

In this protocol paper, we review a set of methods developed in recent years for analyzing nuclear reads obtained from genome skimming. As the cost of sequencing drops, genome skimming (low-coverage shotgun sequencing of a sample) becomes increasingly a cost-effective method of measuring biodiversity at high resolution. While most practitioners only use assembled over-represented organelle reads from a genome skim, the vast majority of the reads are nuclear. Using assembly-free and alignment-free methods described in this protocol, we can compare samples to each other and reference genomes to compute distances, characterize underlying genomes, and infer evolutionary relationships.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Genómica/métodos , Genoma/genética , Programas Informáticos , Núcleo Celular/genética , Biología Computacional/métodos , Humanos
4.
bioRxiv ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405779

RESUMEN

Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in approximately 15% of early stage cancers and 30% of late-stage cancers. EcDNAs drive tumor formation, evolution, and drug resistance by dynamically modulating oncogene copy-number and rewiring gene-regulatory networks. Elucidating the genomic architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective therapies. Paired-end short-read (Illumina) sequencing and mapping have been utilized to represent ecDNA amplifications using a breakpoint graph, where the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint graph have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are intrinsically limited in the identification of breakpoints, phasing together of complex rearrangements and internal duplications, and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural variants and are more likely to span rearranged or duplicated regions. Here, we propose CoRAL (Complete Reconstruction of Amplifications with Long reads), for reconstructing ecDNA architectures using long-read data. CoRAL reconstructs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction, explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive simulations and 9 datasets from previously-characterized cell-lines as compared to previous short-read-based tools. As long-read usage becomes wide-spread, we anticipate that CoRAL will be a valuable tool for profiling the landscape and evolution of focal amplifications in tumors.

5.
Nat Genet ; 55(12): 2189-2199, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945900

RESUMEN

Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias , Humanos , ADN Circular , Meduloblastoma/genética , Estudios Retrospectivos , Neoplasias/genética , Oncogenes , Neoplasias Cerebelosas/genética
6.
Nat Commun ; 14(1): 6711, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872149

RESUMEN

Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.


Asunto(s)
Polimorfismo de Nucleótido Simple , Secuencias Repetidas en Tándem , Humanos , Genotipo , Secuenciación Completa del Genoma
7.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425909

RESUMEN

Focal gene amplifications are among the most common cancer-associated mutations, but their evolution and contribution to tumorigenesis have proven challenging to recapitulate in primary cells and model organisms. Here we describe a general approach to engineer large (>1 Mbp) focal amplifications mediated by extrachromosomal circular DNAs (ecDNAs, also known as "double minutes") in a spatiotemporally controlled manner in cancer cell lines and in primary cells derived from genetically engineered mice. With this strategy, ecDNA formation can be coupled with expression of fluorescent reporters or other selectable markers to enable the identification and tracking of ecDNA-containing cells. We demonstrate the feasibility of this approach by engineering MDM2-containing ecDNAs in near-diploid human cells, showing that GFP expression can be used to track ecDNA dynamics under physiological conditions or in the presence of specific selective pressures. We also apply this approach to generate mice harboring inducible Myc - and Mdm2 -containing ecDNAs analogous to those spontaneously occurring in human cancers. We show that the engineered ecDNAs rapidly accumulate in primary cells derived from these animals, promoting proliferation, immortalization, and transformation.

8.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503111

RESUMEN

The chromosomal theory of inheritance has dominated human genetics, including cancer genetics. Genes on the same chromosome segregate together while genes on different chromosomes assort independently, providing a fundamental tenet of Mendelian inheritance. Extrachromosomal DNA (ecDNA) is a frequent event in cancer that drives oncogene amplification, dysregulated gene expression and intratumoral heterogeneity, including through random segregation during cell division. Distinct ecDNA sequences, herein termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells. However, how multiple ecDNA species within a tumor cell are assorted and maintained across somatic cell generations to drive cancer cell evolution is not known. Here we show that cooperative ecDNA species can be coordinately inherited through mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs encoding distinct oncogenes co-occur and are correlated in copy number in human cancer cells. EcDNA species are coordinately segregated asymmetrically during mitosis, resulting in daughter cells with simultaneous copy number gains in multiple ecDNA species prior to any selection. Computational modeling reveals the quantitative principles of ecDNA co-segregation and co-selection, predicting their observed distributions in cancer cells. Finally, we show that coordinated inheritance of ecDNAs enables co-amplification of specialized ecDNAs containing only enhancer elements and guides therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated inheritance of ecDNAs confers stability to oncogene cooperation and novel gene regulatory circuits, allowing winning combinations of epigenetic states to be transmitted across cell generations.

9.
Nature ; 619(7968): 176-183, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286593

RESUMEN

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Asunto(s)
Inestabilidad Cromosómica , Segregación Cromosómica , Cromosomas , Epigénesis Genética , Micronúcleos con Defecto Cromosómico , Neoplasias , Animales , Humanos , Ratones , Cromatina/genética , Inestabilidad Cromosómica/genética , Cromosomas/genética , Cromosomas/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patología , Mitosis , Variaciones en el Número de Copia de ADN , Procesamiento Proteico-Postraduccional
10.
Bioinform Adv ; 3(1): vbad058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168281

RESUMEN

Summary: TRviz is an open-source Python library for decomposing, encoding, aligning and visualizing tandem repeat (TR) sequences. TRviz takes a collection of alleles (TR containing sequences) and one or more motifs as input and generates a plot showing the motif composition of the TR sequences. Availability and implementation: TRviz is an open-source Python library and freely available at https://github.com/Jong-hun-Park/trviz. Detailed documentation is available at https://trviz.readthedocs.io. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

11.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162993

RESUMEN

Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here we show that ecDNA containing tumors impact four major biological processes. Specifically, ecDNA containing tumors upregulate DNA damage and repair, cell cycle control, and mitotic processes, but downregulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA containing tumors, shedding light on molecular processes that give rise to their development and progression.

12.
Proc Natl Acad Sci U S A ; 120(20): e2210991120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155843

RESUMEN

In 2021, the World Health Organization reclassified glioblastoma, the most common form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratumoral heterogeneity is a key contributor to therapeutic failure. To better define this heterogeneity, genome-wide chromatin accessibility and transcription profiles of clinical samples of glioblastomas and G4 IDHm astrocytomas were analyzed at single-cell resolution. These profiles afforded resolution of intratumoral genetic heterogeneity, including delineation of cell-to-cell variations in distinct cell states, focal gene amplifications, as well as extrachromosomal circular DNAs. Despite differences in IDH mutation status and significant intratumoral heterogeneity, the profiled tumor cells shared a common chromatin structure defined by open regions enriched for nuclear factor 1 transcription factors (NFIA and NFIB). Silencing of NFIA or NFIB suppressed in vitro and in vivo growths of patient-derived glioblastomas and G4 IDHm astrocytoma models. These findings suggest that despite distinct genotypes and cell states, glioblastoma/G4 astrocytoma cells share dependency on core transcriptional programs, yielding an attractive platform for addressing therapeutic challenges associated with intratumoral heterogeneity.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patología , Cromatina/genética , Transcriptoma , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Mutación , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
13.
Nature ; 616(7958): 798-805, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046089

RESUMEN

Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Carcinogénesis , ADN , Progresión de la Enfermedad , Detección Precoz del Cáncer , Neoplasias Esofágicas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patología , Esófago de Barrett/genética , Esófago de Barrett/patología , Estudios de Casos y Controles , ADN/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinogénesis/genética , Secuenciación Completa del Genoma , Estudios de Cohortes , Biopsia , Oncogenes , Inmunomodulación , Variaciones en el Número de Copia de ADN , Amplificación de Genes , Detección Precoz del Cáncer/métodos
14.
bioRxiv ; 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36945429

RESUMEN

Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3,550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.

15.
Eur J Hum Genet ; 31(2): 216-222, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36434258

RESUMEN

Despite substantial efforts in identifying both rare and common variants affecting disease risk, in the majority of diseases, a large proportion of unexplained genetic risk remains. We propose that variable number tandem repeats (VNTRs) may explain a proportion of the missing genetic risk. Herein, in a pilot study with a retrospective cohort design, we tested whether VNTRs are causal modifiers of breast cancer risk in 347 female carriers of the BRCA1 185delAG pathogenic variant, an important group given their high risk of developing breast cancer. We performed targeted-capture to sequence VNTRs, called genotypes with adVNTR, tested the association of VNTRs and breast cancer risk using Cox regression models, and estimated the effect size using a retrospective likelihood approach. Of 303 VNTRs that passed quality control checks, 4 VNTRs were significantly associated with risk to develop breast cancer at false discovery rate [FDR] < 0.05 and an additional 4 VNTRs had FDR < 0.25. After determining the specific risk alleles, there was a significantly earlier age at diagnosis of breast cancer in carriers of the risk alleles compared to those without the risk alleles for seven of eight VNTRs. One example is a VNTR in exon 2 of LINC01973 with a per-allele hazard ratio of 1.58 (1.07-2.33) and 5.28 (2.79-9.99) for the homozygous risk-allele genotype. Results from this first systematic study of VNTRs demonstrate that VNTRs may explain a proportion of the unexplained genetic risk for breast cancer.


Asunto(s)
Neoplasias de la Mama , Repeticiones de Minisatélite , Femenino , Humanos , Neoplasias de la Mama/genética , Estudios Retrospectivos , Funciones de Verosimilitud , Proyectos Piloto , Factores de Riesgo , Alelos , Proteína BRCA1/genética
16.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168210

RESUMEN

Oncogene amplification is a major driver of cancer pathogenesis. Breakage fusion bridge (BFB) cycles, like extrachromosomal DNA (ecDNA), can lead to high copy numbers of oncogenes, but their impact on intratumoral heterogeneity, treatment response, and patient survival are not well understood due to difficulty in detecting them by DNA sequencing. We describe a novel algorithm that detects and reconstructs BFB amplifications using optical genome maps (OGMs), called OM2BFB. OM2BFB showed high precision (>93%) and recall (92%) in detecting BFB amplifications in cancer cell lines, PDX models and primary tumors. OM-based comparisons demonstrated that short-read BFB detection using our AmpliconSuite (AS) toolkit also achieved high precision, albeit with reduced sensitivity. We detected 371 BFB events using whole genome sequences from 2,557 primary tumors and cancer lines. BFB amplifications were preferentially found in cervical, head and neck, lung, and esophageal cancers, but rarely in brain cancers. BFB amplified genes show lower variance of gene expression, with fewer options for regulatory rewiring relative to ecDNA amplified genes. BFB positive (BFB (+)) tumors showed reduced heterogeneity of amplicon structures, and delayed onset of resistance, relative to ecDNA(+) tumors. EcDNA and BFB amplifications represent contrasting mechanisms to increase the copy numbers of oncogene with markedly different characteristics that suggest different routes for intervention.

17.
Cell Syst ; 13(10): 817-829.e3, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36265468

RESUMEN

Computing distance between two genomes without alignments or even access to assemblies has many downstream analyses. However, alignment-free methods, including in the fast-growing field of genome skimming, are hampered by a significant methodological gap. While accurate methods (many k-mer-based) for assembly-free distance calculation exist, measuring the uncertainty of estimated distances has not been sufficiently studied. In this paper, we show that bootstrapping, the standard non-parametric method of measuring estimator uncertainty, is not accurate for k-mer-based methods that rely on k-mer frequency profiles. Instead, we propose using subsampling (with no replacement) in combination with a correction step to reduce the variance of the inferred distribution. We show that the distribution of distances using our procedure matches the true uncertainty of the estimator. The resulting phylogenetic support values effectively differentiate between correct and incorrect branches and identify controversial branches that change across alignment-free and alignment-based phylogenies reported in the literature.


Asunto(s)
Algoritmos , Genoma , Filogenia , Alineación de Secuencia , Incertidumbre
18.
Nat Genet ; 54(11): 1746-1754, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36253572

RESUMEN

Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.


Asunto(s)
Glioblastoma , Neoplasias , Humanos , Oncogenes , ADN/genética , Neoplasias/genética , Neoplasias/patología , Glioblastoma/genética , Receptores ErbB/genética
19.
Eur J Hum Genet ; 30(12): 1413-1422, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36100708

RESUMEN

Hereditary chronic kidney disease (CKD) appears to be more frequent than the clinical perception. Exome sequencing (ES) studies in CKD cohorts could identify pathogenic variants in ~10% of individuals. Tubulointerstitial kidney diseases, showing no typical clinical/histologic finding but tubulointerstitial fibrosis, are particularly difficult to diagnose. We used a targeted panel (29 genes) and MUC1-SNaPshot to sequence 271 DNAs, selected in defined disease entities and age cutoffs from 5217 individuals in the German Chronic Kidney Disease cohort. We identified 33 pathogenic variants. Of these 27 (81.8%) were in COL4A3/4/5, the largest group being 15 COL4A5 variants with nine unrelated individuals carrying c.1871G>A, p.(Gly624Asp). We found three cysteine variants in UMOD, a novel missense and a novel splice variant in HNF1B and the homoplastic MTTF variant m.616T>C. Copy-number analysis identified a heterozygous COL4A5 deletion, and a HNF1B duplication/deletion, respectively. Overall, pathogenic variants were present in 12.5% (34/271) and variants of unknown significance in 9.6% (26/271) of selected individuals. Bioinformatic predictions paired with gold standard diagnostics for MUC1 (SNaPshot) could not identify the typical cytosine duplication ("c.428dupC") in any individual, implying that ADTKD-MUC1 is rare. Our study shows that >10% of selected individuals carry disease-causing variants in genes partly associated with tubulointerstitial kidney diseases. COL4A3/4/5 genes constitute the largest fraction, implying they are regularly overlooked using clinical Alport syndrome criteria and displaying the existence of phenocopies. We identified variants easily missed by some ES pipelines. The clinical filtering criteria applied enriched for an underlying genetic disorder.


Asunto(s)
Nefritis Hereditaria , Nefritis Intersticial , Insuficiencia Renal Crónica , Humanos , Prevalencia , Nefritis Hereditaria/genética , Nefritis Intersticial/epidemiología , Nefritis Intersticial/genética , Nefritis Intersticial/diagnóstico , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Mutación
20.
Nat Genet ; 54(10): 1527-1533, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36123406

RESUMEN

Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumor growth, drug resistance and shorter survival. Currently, the impact of nonchromosomal oncogene inheritance-random identity by descent-is poorly understood. Also unclear is the impact of ecDNA on somatic variation and selection. Here integrating theoretical models of random segregation, unbiased image analysis, CRISPR-based ecDNA tagging with live-cell imaging and CRISPR-C, we demonstrate that random ecDNA inheritance results in extensive intratumoral ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted treatment. Observed ecDNAs benefit host cell survival or growth and can change within a single cell cycle. ecDNA inheritance can predict, a priori, some of the aggressive features of ecDNA-containing cancers. These properties are facilitated by the ability of ecDNA to rapidly adapt genomes in a way that is not possible through chromosomal oncogene amplification. These results show how the nonchromosomal random inheritance pattern of ecDNA contributes to poor outcomes for patients with cancer.


Asunto(s)
Neoplasias , Oncogenes , Evolución Biológica , ADN , Herencia Extracromosómica , Humanos , Neoplasias/genética , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...