Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067177

RESUMEN

Multiple myeloma (MM) has witnessed improved patient outcomes through advancements in therapeutic approaches. Notably, allogeneic stem cell transplantation, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have contributed to enhanced quality of life. Recently, a promising avenue has emerged with chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (BCMA), expressed widely on MM cells. To mitigate risks associated with allogenic T cells, we investigated the potential of BCMA CAR expression in natural killer cells (NKs), known for potent cytotoxicity and minimal side effects. Using the NK-92 cell line, we co-expressed BCMA CAR and soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) employing the piggyBac transposon system. Engineered NK cells (CAR-NK-92-TRAIL) demonstrated robust cytotoxicity against a panel of MM cell lines and primary patient samples, outperforming unmodified NK-92 cells with a mean difference in viability of 45.1% (±26.1%, depending on the target cell line). Combination therapy was explored with the proteasome inhibitor bortezomib (BZ) and γ-secretase inhibitors (GSIs), leading to a significant synergistic effect in combination with CAR-NK-92-TRAIL cells. This synergy was evident in cytotoxicity assays where a notable decrease in MM cell viability was observed in combinatorial therapy compared to single treatment. In summary, our study demonstrates the therapeutic potential of the CAR-NK-92-TRAIL cells for the treatment of MM. The synergistic impact of combining these engineered NK cells with BZ and GSI supports further development of allogeneic CAR-based products for effective MM therapy.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Antígeno de Maduración de Linfocitos B/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Inmunoterapia Adoptiva , Mieloma Múltiple/patología , Mieloma Múltiple/terapia , Calidad de Vida , Receptores Quiméricos de Antígenos/metabolismo
2.
Cells ; 12(3)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36766789

RESUMEN

Myeloma bone disease (MBD) is one of the major complications in multiple myeloma (MM)-the second most frequent hematologic malignancy. It is characterized by the formation of bone lesions due to the local action of proliferating MM cells, and to date, no effective therapy has been developed. In this study, we propose a novel approach for the local treatment of MBD with a combination of natural killer cells (NKs) and mesenchymal stem cells (MSCs) within a fibrin scaffold, altogether known as FINM. The unique biological properties of the NKs and MSCs, joined to the injectable biocompatible fibrin, permitted to obtain an efficient "off-the-shelf" ready-to-use composite for the local treatment of MBD. Our in vitro analyses demonstrate that NKs within FINM exert a robust anti-tumor activity against MM cell lines and primary cells, with the capacity to suppress osteoclast activity (~60%) within in vitro 3D model of MBD. Furthermore, NKs' post-thawing cytotoxic activity is significantly enhanced (~75%) in the presence of MSCs, which circumvents the decrease of NKs cytotoxicity after thawing, a well-known issue in the cryopreservation of NKs. To reduce the tumor escape, we combined FINM with other therapeutic agents (bortezomib (BZ), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)), observing a clear therapeutic synergistic effect in vitro. Finally, the therapeutic efficacy of FINM in combination with BZ and TRAIL was assessed in a mouse model of MM, achieving 16-fold smaller tumors compared to the control group without treatment. These results suggest the potential of FINM to serve as an allogeneic "off-the-shelf" approach to improve the outcomes of patients suffering from MBD.


Asunto(s)
Enfermedades Óseas , Mieloma Múltiple , Animales , Ratones , Mieloma Múltiple/tratamiento farmacológico , Línea Celular Tumoral , Bortezomib/uso terapéutico , Inmunoterapia , Enfermedades Óseas/terapia
3.
Biomed Pharmacother ; 158: 114061, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495661

RESUMEN

Fibrosis is present in an important proportion of myocardial disorders. Injury activates cardiac fibroblasts, which deposit excess extracellular matrix, increasing tissue stiffness, impairing cardiac function, and leading to heart failure. Clinical therapies that directly target excessive fibrosis are limited, and more effective treatments are needed. Immunotherapy based on chimeric antigen receptor (CAR) T cells is a novel technique that redirects T lymphocytes toward specific antigens to eliminate the target cells. It is currently used in haematological cancers but has demonstrated efficacy in mouse models of hypertensive cardiac fibrosis, with activated fibroblasts as the target cells. CAR T cell therapy is associated with significant toxicities, but CAR natural killer cells can overcome efficacy and safety limitations. The use of CAR immunotherapy offers a potential alternative to current therapies for fibrosis reduction and restoration of cardiac function in patients with myocardial fibrosis.


Asunto(s)
Cardiomiopatías , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Ratones , Inmunoterapia/métodos , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Cardiomiopatías/tratamiento farmacológico , Fibrosis , Neoplasias/tratamiento farmacológico
4.
Mol Cancer Ther ; 20(11): 2291-2301, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433662

RESUMEN

Converting human fibroblasts into personalized induced neural stem cells (hiNSC) that actively seek out tumors and deliver cytotoxic agents is a promising approach for treating cancer. Herein, we provide the first evidence that intravenously-infused hiNSCs secreting cytotoxic agent home to and suppress the growth of non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). Migration of hiNSCs to NSCLC and TNBC in vitro was investigated using time-lapse motion analysis, which showed directional movement of hiNSCs to both tumor cell lines. In vivo, migration of intravenous hiNSCs to orthotopic NSCLC or TNBC tumors was determined using bioluminescent imaging (BLI) and immunofluorescent post-mortem tissue analysis, which indicated that hiNSCs colocalized with tumors within 3 days of intravenous administration and persisted through 14 days. In vitro, efficacy of hiNSCs releasing cytotoxic TRAIL (hiNSC-TRAIL) was monitored using kinetic imaging of co-cultures, in which hiNSC-TRAIL therapy induced rapid killing of both NSCLC and TNBC. Efficacy was determined in vivo by infusing hiNSC-TRAIL or control cells intravenously into mice bearing orthotopic NSCLC or TNBC and tracking changes in tumor volume using BLI. Mice treated with intravenous hiNSC-TRAIL showed a 70% or 72% reduction in NSCLC or TNBC tumor volume compared with controls within 14 or 21 days, respectively. Safety was assessed by hematology, blood chemistry, and histology, and no significant changes in these safety parameters was observed through 28 days. These results indicate that intravenous hiNSCs-TRAIL seek out and kill NSCLC and TNBC tumors, suggesting a potential new strategy for treating aggressive peripheral cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Células-Madre Neurales/trasplante , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Humanos , Ratones
5.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108203

RESUMEN

Engineered tumor-homing neural stem cells (NSCs) have shown promise in treating cancer. Recently, we transdifferentiated skin fibroblasts into human-induced NSCs (hiNSC) as personalized NSC drug carriers. Here, using a SOX2 and spheroidal culture-based reprogramming strategy, we generated a new hiNSC variant, hiNeuroS, that was genetically distinct from fibroblasts and first-generation hiNSCs and had significantly enhanced tumor-homing and antitumor properties. In vitro, hiNeuroSs demonstrated superior migration to human triple-negative breast cancer (TNBC) cells and in vivo rapidly homed to TNBC tumor foci following intracerebroventricular (ICV) infusion. In TNBC parenchymal metastasis models, ICV infusion of hiNeuroSs secreting the proapoptotic agent TRAIL (hiNeuroS-TRAIL) significantly reduced tumor burden and extended median survival. In models of TNBC leptomeningeal carcinomatosis, ICV dosing of hiNeuroS-TRAIL therapy significantly delayed the onset of tumor formation and extended survival when administered as a prophylactic treatment, as well as reduced tumor volume while prolonging survival when delivered as established tumor therapy.


Asunto(s)
Células-Madre Neurales , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Fibroblastos , Humanos , Células Madre Neoplásicas/patología , Células-Madre Neurales/patología , Neoplasias de la Mama Triple Negativas/patología
6.
Cells ; 10(5)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919155

RESUMEN

Cellular immunotherapy is becoming a new pillar in cancer treatment after recent striking results in different clinical trials with chimeric antigen receptor T cells. However, this innovative therapy is not exempt from challenges such as off-tumor toxicity, tumor recurrence in heterogeneous tumors, and affordability. To surpass these limitations, we exploit the unique anti-tumor characteristics of natural killer (NK) cells. In this study, we aimed to obtain a clinically relevant number of allogeneic NK cells derived from peripheral blood (median of 14,050 million cells from a single donor) to target a broad spectrum of solid and liquid tumor types. To boost their anti-tumor activity, we combined allogeneic NK cells with the approved anti-cluster of differentiation 38 (CD-38) monoclonal antibody Daratumumab to obtain a synergistic therapeutic effect against incurable multiple myeloma. The combination therapy was refined with CD16 polymorphism donor selection and uncomplicated novel in vitro pretreatment to avoid undesired fratricide, increasing the in vitro therapeutic effect against the CD-38 positive multiple myeloma cell line by more than 20%. Time-lapse imaging of mice with established human multiple myeloma xenografts revealed that combination therapy of selected and pretreated NK cells with Daratumumab presented tumor volumes 43-fold smaller than control ones. Combination therapy with an allogeneic source of fully functional NK cells could be beneficial in future clinical settings to circumvent monoclonal antibodies' low therapeutic efficiency due to NK cell dysfunctionality in MM patients.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Mieloma Múltiple/tratamiento farmacológico , Animales , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones SCID
7.
Tissue Eng Part A ; 27(13-14): 857-866, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32907497

RESUMEN

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células-Madre Neurales , Animales , Apoptosis , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Ratones
8.
Tissue Eng Part A ; 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33085922

RESUMEN

Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.

9.
Cancers (Basel) ; 12(7)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635428

RESUMEN

Cell-to-cell communication is a fundamental process in every multicellular organism. In addition to membrane-bound and released factors, the sharing of cytosolic components represents a new, poorly explored signaling route. An extraordinary example of this communication channel is the direct transport of mitochondria between cells. In this review, we discuss how intercellular mitochondrial transfer can be used by cancer cells to sustain their high metabolic requirements and promote drug resistance and describe relevant molecular players in the context of current and future cancer therapy.

10.
Mol Ther ; 28(7): 1614-1627, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32402245

RESUMEN

The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM). We then utilized a panel of functional and genomic studies to investigate the efficacy and tumor-homing capacity of these patient-derived cells, as well as genomic analysis, to characterize the impact of interpatient variability on this personalized cell therapy. From the skin-tissue biopsies, we established fibroblasts and transdifferentiated the cells into iNSCs. Genomic and functional testing revealed marked variability in growth rates, therapeutic agent production, and gene expression during fibroblast-to-iNSC conversion among patient lines. In vivo testing showed patient-derived iNSCs home to tumors, yet rates and expression of homing-related pathways varied among patients. With the use of surgical-resection mouse models of invasive human cluster of differentiation 133+ (CD133+) GBM cells and serial kinetic imaging, we found that "high-performing" patient-derived iNSC lines reduced the volume of GBM cells 60-fold and extended survival from 28 to 45 days. Treatment with "low-performing" patient lines had minimal effect on tumor growth, but the anti-tumor effect could be rescued by increasing the intracavity dose. Together, these data show, for the first time, that tumor-homing iNSCs can be generated from the skin of cancer patients and efficaciously suppress tumor growth. We also begin to define genetic markers that could be used to identify cells that will contain the most effective attributes for tumor homing and kill in human patients, including high gene expression of the semaphorin-3B (SEMA3B), which is known to be involved in neuronal cell migration. These studies should serve as an important guide toward clinical GBM therapy, where the personalized nature of optimized iNSC therapy has the potential to avoid transplant rejection and maximize treatment durability.


Asunto(s)
Glioblastoma/terapia , Células Madre Pluripotentes Inducidas/trasplante , Glicoproteínas de Membrana/genética , Células-Madre Neurales/trasplante , Semaforinas/genética , Piel/citología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Transdiferenciación Celular , Células Cultivadas , Femenino , Fibroblastos/citología , Glioblastoma/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Células-Madre Neurales/citología , Cultivo Primario de Células , Ratas , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancers (Basel) ; 12(5)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456165

RESUMEN

: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.

12.
J Neuroimmune Pharmacol ; 15(3): 487-500, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31722094

RESUMEN

Efficient targeted delivery of anticancer agents to TNBC cells remains one of the greatest challenges to developing therapies. The lack of tumor-specific markers, aggressive nature of the tumor, and unique propensity to recur and metastasize make TNBC tumors more difficult to treat than other subtypes. We propose to exploit natural ability of macrophages to target cancer cells by means of extracellular vesicles (EVs) as drug delivery vehicles for chemotherapeutic agents, paclitaxel (PTX) and doxorubicin (Dox). We demonstrated earlier that macrophage-derived EVs loaded with PTX (EV-PTX) and Dox (EV-Dox) target cancer cells and exhibited high anticancer efficacy in a mouse model of pulmonary metastases. Herein, we report a manufacture and characterization of novel EV-based drug formulations using different loading procedures that were optimized by varying pH, temperature, and sonication conditions. Selected EV-based formulations showed a high drug loading, efficient accumulation in TNBC cells in vitro, and pronounced anti-proliferation effect. Drug-loaded EVs target TNBC in vivo, including the orthotopic mouse T11 tumors in immune competent BALB/C mice, and human MDA-MB-231 tumors in athymic nu/nu mice, and abolished tumor growth. Overall, EV-based formulations can provide a novel solution to a currently unmet clinical need and reduce the morbidity and mortality of TNBC patients. Graphical Abstract Macrophage-derived extracellular vesicles (EVs) for targeted drug delivery to TNBC tumors. Chemotherapeutics with different water solubility (Dox or PTX, i.e. hydrophilic or hydrophobic drugs, respectively) were loaded into macrophage-derived EVs through parental cells (Dox), or into naïve EVs (Dox or PTX), and their antitumor efficacy was demonstrated in mouse orthotopic TNBC model.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/química , Macrófagos/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Doxorrubicina/administración & dosificación , Composición de Medicamentos , Femenino , Humanos , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas , Paclitaxel/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30773888

RESUMEN

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Células Madre Mesenquimatosas/química , Esferoides Celulares/trasplante , Ingeniería Celular/tendencias , Movimiento Celular/efectos de los fármacos , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patología , Humanos , Células Madre Mesenquimatosas/citología , Nanomedicina/tendencias , Esferoides Celulares/química , Tropismo Viral/efectos de los fármacos
14.
PLoS One ; 13(7): e0198596, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29990322

RESUMEN

BACKGROUND: Cytotoxic neural stem cells (NSCs) have emerged as a promising treatment for Medulloblastoma (MB), the most common malignant primary pediatric brain tumor. The lack of accurate pre-clinical models incorporating surgical resection and tumor recurrence limits advancement in post-surgical MB treatments. Using cell lines from two of the 5 distinct MB molecular sub-groups, in this study, we developed an image-guided mouse model of MB surgical resection and investigate intra-cavity NSC therapy for post-operative MB. METHODS: Using D283 and Daoy human MB cells engineered to express multi-modality optical reporters, we created the first image-guided resection model of orthotopic MB. Brain-derived NSCs and novel induced NSCs (iNSCs) generated from pediatric skin were engineered to express the pro-drug/enzyme therapy thymidine kinase/ganciclovir, seeded into the post-operative cavity, and used to investigate intra-cavity therapy for post-surgical MB. RESULTS: We found that surgery reduced MB volumes by 92%, and the rate of post-operative MB regrowth increased 3-fold compared to pre-resection growth. Real-time imaging showed NSCs rapidly homed to MB, migrating 1.6-fold faster and 2-fold farther in the presence of tumors, and co-localized with MB present in the contra-lateral hemisphere. Seeding of cytotoxic NSCs into the post-operative surgical cavity decreased MB volumes 15-fold and extended median survival 133%. As an initial step towards novel autologous therapy in human MB patients, we found skin-derived iNSCs homed to MB cells, while intra-cavity iNSC therapy suppressed post-surgical tumor growth and prolonged survival of MB-bearing mice by 123%. CONCLUSIONS: We report a novel image-guided model of MB resection/recurrence and provide new evidence of cytotoxic NSCs/iNSCs delivered into the surgical cavity effectively target residual MB foci.


Asunto(s)
Neoplasias Encefálicas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/prevención & control , Células-Madre Neurales/trasplante , Cirugía Asistida por Computador/métodos , Animales , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Diferenciación Celular , Movimiento Celular , Modelos Animales de Enfermedad , Terapia Enzimática/métodos , Células Epiteliales/citología , Ganciclovir/farmacología , Humanos , Inyecciones Intralesiones , Meduloblastoma/mortalidad , Meduloblastoma/patología , Meduloblastoma/cirugía , Ratones , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Células-Madre Neurales/citología , Profármacos/farmacología , Piel/citología , Análisis de Supervivencia , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
15.
Methods Mol Biol ; 1831: 49-58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30051424

RESUMEN

Engineered stem cells have recently entered clinical trials as therapeutic agents for treating glioblastoma foci that remain after primary brain tumor resection. However, efficient delivery of anti-cancer mesenchymal stem cells (MSCs) into the resection cavity remains a potential obstacle to therapeutic efficacy in humans. Direct injection quickly leads to significant stem cell loss and poor tumor killing. Recent reports have shown that biodegradable scaffolds improve MSC persistence and restore therapeutic potential. Here, we describe a method for the delivery of therapeutic MSCs on biodegradable fibrin scaffolds into the resection cavity to treat postoperative brain cancer.


Asunto(s)
Materiales Biocompatibles/farmacología , Neoplasias Encefálicas/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Animales , Neoplasias Encefálicas/cirugía , Muerte Celular , Línea Celular Tumoral , Humanos , Ratones Desnudos
16.
J Vis Exp ; (137)2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-30059037

RESUMEN

Glioblastoma (GBM), the most common and aggressive primary brain cancer, carries a life expectancy of 12-15 months. The short life expectancy is due in part to the inability of the current treatment, consisting of surgical resection followed by radiation and chemotherapy, to eliminate invasive tumor foci. Treatment of these foci may be improved with tumoricidal human mesenchymal stem cells (MSCs). MSCs exhibit potent tumor tropism and can be engineered to express therapeutic proteins that kill tumor cells. Advancements in preclinical models indicate that surgical resection induces premature MSC loss and reduces therapeutic efficacy. Efficacy of MSC treatment can be improved by seeding MSCs on a biodegradable poly(lactic acid) (PLA) scaffold. MSC delivery into the surgical resection cavity on a PLA scaffold restores cell retention, persistence, and tumor killing. To study the effects of MSC-seeded PLA implantation on GBM, an accurate preclinical model is needed. Here we provide a preclinical surgical protocol for image-guided tumor resection of GBM in immune-deficient mice followed by MSC-seeded scaffold implantation. MSCs are engineered with lentiviral constructs to constitutively express and secrete therapeutic TNFα-related apoptosis-inducing ligand (TRAIL) as well as green fluorescent protein (GFP) to allow fluorescent tracking. Similarly, the U87 tumor cells are engineered to express mCherry and firefly luciferase, providing dual fluorescent/luminescent tracking. While currently used for investigating stem cell mediated delivery of therapeutics, this protocol could be modified to investigate the impact of surgical resection on other GBM interventions.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Células Madre/metabolismo , Andamios del Tejido/química , Animales , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre/patología
17.
Sci Transl Med ; 9(375)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148846

RESUMEN

Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSCTE), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSCTE in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSCTE that were nestin+ and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSCTE rapidly migrated to human GBM cells and penetrated human GBM spheroids, a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSCTE delivery of the proapoptotic agent tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally, h-iNSCTE thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSCTE-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy, h-iNSCTE-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSCTE is a platform for creating tumor-homing cytotoxic cell therapies for cancer, where the potential to avoid carrier rejection could maximize treatment durability in human trials.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Células-Madre Neurales/citología , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Animales , Movimiento Celular , Transdiferenciación Celular , Sistemas de Liberación de Medicamentos , Fibroblastos/citología , Humanos , Ratones , Células-Madre Neurales/trasplante , Piel/citología , Esferoides Celulares , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Neuro Oncol ; 18(12): 1622-1633, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27298311

RESUMEN

BACKGROUND: Surgical resection is a universal component of glioma therapy. Little is known about the postoperative microenvironment due to limited preclinical models. Thus, we sought to develop a glioma resection and recurrence model in syngeneic immune-competent mice to understand how surgical resection influences tumor biology and the local microenvironment. METHODS: We genetically engineered cells from a murine glioma mouse model to express fluorescent and bioluminescent reporters. Established allografts were resected using image-guided microsurgery. Postoperative tumor recurrence was monitored by serial imaging, and the peritumoral microenvironment was characterized by histopathology and immunohistochemistry. Coculture techniques were used to explore how astrocyte injury influences tumor aggressiveness in vitro. Transcriptome and secretome alterations in injured astrocytes was examined by RNA-seq and Luminex. RESULTS: We found that image-guided resection achieved >90% reduction in tumor volume but failed to prevent both local and distant tumor recurrence. Immunostaining for glial fibrillary acidic protein and nestin showed that resection-induced injury led to temporal and spatial alterations in reactive astrocytes within the peritumoral microenvironment. In vitro, we found that astrocyte injury induced transcriptome and secretome alterations and promoted tumor proliferation, as well as migration. CONCLUSIONS: This study demonstrates a unique syngeneic model of glioma resection and recurrence in immune-competent mice. Furthermore, this model provided insights into the pattern of postsurgical tumor recurrence and changes in the peritumoral microenvironment, as well as the impact of injured astrocytes on glioma growth and invasion. A better understanding of the postsurgical tumor microenvironment will allow development of targeted anticancer agents that improve surgery-mediated effects on tumor biology.


Asunto(s)
Astrocitos/fisiología , Neoplasias Encefálicas/fisiopatología , Modelos Animales de Enfermedad , Glioblastoma/fisiopatología , Recurrencia Local de Neoplasia/fisiopatología , Microambiente Tumoral , Aloinjertos , Animales , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Glioblastoma/metabolismo , Glioblastoma/patología , Ratones , Recurrencia Local de Neoplasia/metabolismo , Transcriptoma
19.
Biomaterials ; 90: 116-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27016620

RESUMEN

Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENS(sTR)) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENS(sTR) implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/terapia , Sistemas de Liberación de Medicamentos , Glioblastoma/terapia , Nanofibras/química , Trasplante de Células Madre , Andamios del Tejido/química , Animales , Antineoplásicos/uso terapéutico , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Línea Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Ratones Desnudos , Nanofibras/ultraestructura , Poliésteres/química , Trasplante de Células Madre/métodos , Células Madre/citología
20.
Nat Commun ; 7: 10593, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26830441

RESUMEN

Transdifferentiation (TD) is a recent advancement in somatic cell reprogramming. The direct conversion of TD eliminates the pluripotent intermediate state to create cells that are ideal for personalized cell therapy. Here we provide evidence that TD-derived induced neural stem cells (iNSCs) are an efficacious therapeutic strategy for brain cancer. We find that iNSCs genetically engineered with optical reporters and tumouricidal gene products retain the capacity to differentiate and induced apoptosis in co-cultured human glioblastoma cells. Time-lapse imaging shows that iNSCs are tumouritropic, homing rapidly to co-cultured glioblastoma cells and migrating extensively to distant tumour foci in the murine brain. Multimodality imaging reveals that iNSC delivery of the anticancer molecule TRAIL decreases the growth of established solid and diffuse patient-derived orthotopic glioblastoma xenografts 230- and 20-fold, respectively, while significantly prolonging the median mouse survival. These findings establish a strategy for creating autologous cell-based therapies to treat patients with aggressive forms of brain cancer.


Asunto(s)
Astrocitos , Glioblastoma , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Fibroblastos , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Neoplasias Experimentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...