Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4285, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383718

RESUMEN

Acinetobacter baumannii is currently a serious threat to human health, especially to people with immunodeficiency as well as patients with prolonged hospital stays and those undergoing invasive medical procedures. The ever-increasing percentage of strains characterized by multidrug resistance to widely used antibiotics and their ability to form biofilms make it difficult to fight infections with traditional antibiotic therapy. In view of the above, phage therapy seems to be extremely attractive. Therefore, phages with good storage stability are recommended for therapeutic purposes. In this work, we present the results of studies on the stability of 12 phages specific for A. baumannii under different conditions (including temperature, different pH values, commercially available disinfectants, essential oils, and surfactants) and in the urine of patients with urinary tract infections (UTIs). Based on our long-term stability studies, the most optimal storage method for the A. baumannii phage turned out to be - 70 °C. In contrast, 60 °C caused a significant decrease in phage activity after 1 h of incubation. The tested phages were the most stable at a pH from 7.0 to 9.0, with the most inactivating pH being strongly acidic. Interestingly, ethanol-based disinfectants caused a significant decrease in phage titers even after 30 s of incubation. Moreover, copper and silver nanoparticle solutions also caused a decrease in phage titers (which was statistically significant, except for the Acba_3 phage incubated in silver solution), but to a much lesser extent than disinfectants. However, bacteriophages incubated for 24 h in essential oils (cinnamon and eucalyptus) can be considered stable.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Desinfectantes , Nanopartículas del Metal , Aceites Volátiles , Humanos , Plata , Antibacterianos/farmacología , Biopelículas
2.
Viruses ; 15(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36680270

RESUMEN

Infections with the opportunistic Gram-negative bacterium Acinetobacter baumannii pose a serious threat today, which is aggravated by the growing problem of multi-drug resistance among bacteria, caused by the overuse of antibiotics. Treatment of infections caused by antibiotic-resistant A. baumannii strains with the use of phage therapy is not only a promising alternative, but sometimes the only option. Therefore, phages specific for clinical multi-drug resistant A. baumannii were searched for in environmental, municipal, and hospital wastewater samples collected from different locations in Poland. The conducted research allowed us to determine the biological properties and morphology of the tested phages. As a result of our research, 12 phages specific for A. baumannii, 11 of which turned out to be temperate and only one lytic, were isolated. Their lytic spectra ranged from 11 to 75%. The plaques formed by most phages were small and transparent, while one of them formed relatively large plaques with a clearly marked 'halo' effect. Based on Transmission Electron Microscopy (TEM), most of our phages have been classified as siphoviruses (only one phage was classified as a podovirus). All phages have icosahedral capsid symmetry, and 11 of them have a long tail. Optimal multiplicity of infections (MOIs) and the adsorption rate were also determined. MOI values varied depending on the phage-from 0.001 to 10. Based on similarities to known bacteriophages, our A. baumannii-specific phages have been proposed to belong to the Beijerinckvirinae and Junivirinae subfamilies. This study provides an additional tool in the fight against this important pathogen and may boost the interest in phage therapy as an alternative and supplement to the current antibiotics.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Antibacterianos/farmacología , Proteínas de la Cápside , Microscopía Electrónica de Transmisión
3.
Cells ; 10(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34831214

RESUMEN

Studies described so far suggest that human ß-defensin 2 is an important protein of innate immune response which provides protection for the human organism against invading pathogens of bacterial, viral, fungal, as well as parasitical origin. Its pivotal role in enhancing immunity was proved in infants. It may also be considered a marker of inflammation. Its therapeutic administration has been suggested for maintenance of the balance of systemic homeostasis based on the appropriate composition of the microbiota. It has been suggested that it may be an important therapeutic tool for modulating the response of the immune system in many inflammatory diseases, offering new treatment modalities. For this reason, its properties and role in the human body discussed in this review should be studied in more detail.


Asunto(s)
Inmunidad , beta-Defensinas/metabolismo , Biomarcadores/metabolismo , Enfermedad , Epitelio/metabolismo , Humanos , Especificidad de Órganos , beta-Defensinas/genética
4.
Viruses ; 13(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201873

RESUMEN

The aim of this study was the isolation and characterization, including the phage effect on honeybees in laboratory conditions, of phages active against Paenibacillus larvae, the causative agent of American Foulbrood-a highly infective and easily spreading disease occurring in honeybee larva, and subsequently the development of a preparation to prevent and treat this dangerous disease. From the tested material (over 2500 samples) 35 Paenibacillus spp. strains were obtained and used to search for phages. Five phages specific to Paenibacillus were isolated and characterized (ultrastructure, morphology, biological properties, storage stability, and genome sequence). The characteristics were performed to obtain knowledge of their lytic potential and compose the final phage cocktail with high antibacterial potential and intended use of future field application. Preliminary safety studies have also been carried out on healthy bees, which suggest that the phage preparation administered is harmless.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Abejas/microbiología , Paenibacillus larvae/virología , Animales , Bacteriólisis , Bacteriófagos/ultraestructura , Endotoxinas/metabolismo , Especificidad del Huésped , Paenibacillus larvae/metabolismo , Polonia
5.
Viruses ; 13(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071422

RESUMEN

Bacteriophages are natural biological entities that limit the growth and amplification of bacteria. They are important stimulators of evolutionary variability in bacteria, and currently are considered a weapon against antibiotic resistance of bacteria. Nevertheless, apart from their antibacterial activity, phages may act as modulators of mammalian immune responses. In this paper, we focus on temperate phages able to execute the lysogenic development, which may shape animal or human immune response by influencing various processes, including phagocytosis of bacterial invaders and immune modulation of mammalian host cells.


Asunto(s)
Bacteriófagos/inmunología , Células Eucariotas/virología , Interacciones Microbiota-Huesped/inmunología , Inmunidad , Profagos/inmunología , Animales , Bacteriófagos/genética , Bacteriófagos/fisiología , Humanos , Inmunomodulación , Lisogenia/inmunología
6.
Antibiotics (Basel) ; 10(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803438

RESUMEN

Acinetobacter baumannii are bacteria that belong to the critical priority group due to their carbapenems and third generation cephalosporins resistance, which are last-chance antibiotics. The growing multi-drug resistance and the ability of these bacteria to form biofilms makes it difficult to treat infections caused by this species, which often affects people with immunodeficiency or intensive care unit patients. In addition, most of the infections are associated with catheterization of patients. These bacteria are causative agents, inter alia, of urinary tract infections (UTI) which can cause serious medical and social problems, because of treatment difficulties as well as the possibility of recurrence and thus severely decrease patients' quality of life. Therefore, a promising alternative to standard antibiotic therapy can be bacteriophage therapy, which will generate lower costs and will be safer for the treated patients and has real potential to be much more effective. The aim of the review is to outline the important role of drug-resistant A. baumannii in the pathogenesis of UTI and highlight the potential for fighting these infections with bacteriophage therapy. Further studies on the use of bacteriophages in the treatment of UTIs in animal models may lead to the use of bacteriophage therapy in human urinary tract infections caused by A. baumannii in the future.

7.
Microorganisms ; 9(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498243

RESUMEN

The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years.

8.
Front Microbiol ; 11: 1913, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849478

RESUMEN

American foulbrood is one of the most serious and yet unsolved problems of beekeeping around the world, because it causes a disease leading to the weakening of the vitality of honey bee populations and huge economic losses both in agriculture and horticulture. The etiological agent of this dangerous disease is an extremely pathogenic spore-forming bacterium, Paenibacillus larvae, which makes treatment very difficult. What is more, the use of antibiotics in the European Union is forbidden due to restrictions related to the prevention of the presence of antibiotic residues in honey, as well as the global problem of spreading antibiotic resistance in case of bacterial strains. The only available solution is burning of entire bee colonies, which results in large economic losses. Therefore, bacteriophages and their lytic enzymes can be a real effective alternative in the treatment and prevention of this Apis mellifera disease. In this review, we summarize phage characteristics that make them a potentially useful tool in the fight against American foulbrood. In addition, we gathered data regarding phage application that have been described so far, and attempted to show practical implications and possible limitations of their usage.

9.
Expert Rev Anti Infect Ther ; 17(8): 583-606, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31322022

RESUMEN

Introduction: Phages consist of nucleic acids and proteins that may lose their activity under different physico-chemical conditions. The production process of phage formulations may decrease phage infectivity. Ingredients present in the preparation may influence phage particles, although preparation and storage conditions may also cause variations in phage titer. Significant factors are the manner of phage application, the patient's immune system status, the type of medication being taken, and diet. Areas covered: We discuss factors determining phage activity and stability, which is relevant for the preparation and application of phage formulations with the highest therapeutic efficacy. Our article should be helpful for more insightful implementation of clinical trials, which could pave the way for successful phage therapy. Expert opinion: The number of naturally occurring phages is practically unlimited and phages vary in their susceptibility to external factors. Modern methods offer engineering techniques which should lead to enhanced precision in phage delivery and anti-bacterial activity. Recent data suggesting that phages may also be used in treating nonbacterial infections as well as anti-inflammatory and immunomodulatory agents add further weight to such studies. It may be anticipated that different phage activities could have varying susceptibility to factors determining their actions.


Asunto(s)
Infecciones Bacterianas/terapia , Bacteriófagos/metabolismo , Terapia de Fagos/métodos , Animales , Bacterias/aislamiento & purificación , Bacteriófagos/química , Humanos
10.
Virol Sin ; 34(4): 347-357, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31093881

RESUMEN

Acinetobacter baumannii causes serious infections especially in immunocompromised and/or hospitalized patients. Several A. baumannii strains are multidrug resistant and infect wounds, bones, and the respiratory tract. Current studies are focused on finding new effective agents against A. baumannii. Phage therapy is a promising means to fight this bacterium and many studies on procuring and applying new phages against A. baumannii are currently being conducted. As shown in animal models, phages against multidrug-resistant A. baumannii may control bacterial infections caused by this pathogen and may be a real hope to solve this dangerous health problem.


Asunto(s)
Infecciones por Acinetobacter/terapia , Antibacterianos/farmacología , Bacteriófagos/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple , Terapia de Fagos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/virología , Animales , Bacteriófagos/fisiología , Modelos Animales de Enfermedad , Humanos
11.
Front Microbiol ; 9: 1434, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008710

RESUMEN

Prostatitis has various etiology including bacterial infection and dysregulated immunity; some of its forms remain a serious therapeutic challenge. Inflammation occurs in all forms of this disorder and is proposed to predispose to the development of prostate cancer (PC). There are reports that phage therapy is effective in chronic bacterial prostatitis. Recent findings suggest that phages not only eliminate bacteria, but also mediate immunomodulating (for example, anti-inflammatory) functions. The immunomodulating effects of phages could be beneficial in treating all forms of prostatitis and play some role in the prevention of the development of PC. As the etiological factors contributing to the majority of prostatitis cases remains largely unknown, and management options are often likewise limited, phage therapy merits further research as an attractive therapeutic option given its immunomodulating effects irrespective of the underlying causative factor(s).

12.
Front Med (Lausanne) ; 5: 146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29876350

RESUMEN

Until recently, phages were considered as mere "bacteria eaters" with potential for use in combating antimicrobial resistance. The real value of phage therapy assessed according to the standards of evidence-based medicine awaits confirmation by clinical trials. However, the progress in research on phage biology has shed more light on the significance of phages. Accumulating data indicate that phages may also interact with eukaryotic cells. How such interactions could be translated into advances in medicine (especially novel means of therapy) is discussed herein.

13.
Viruses ; 10(6)2018 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-29843391

RESUMEN

In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.


Asunto(s)
Terapia de Fagos/tendencias , Animales , Bacterias/virología , Bacteriófagos , Ensayos Clínicos como Asunto , Humanos , Inmunomodulación , Ratones , Profagos
14.
Front Microbiol ; 9: 630, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666617

RESUMEN

Recently, leading medical journals emphasized the importance of further studies on the potential application of bacterial viruses (phages) for the treatment of antibiotics-resistant infections outlining the present status of the therapy and perspectives for the future. Furthermore, a leading scientific journal pointed to the recent progress in research on phage interactions with eukaryotic cells (especially cells of the immune system) and potential implications of their results for our broader understanding of the role of phages - not only as "bacteria eaters" - but also as an important part of our body defense protecting against external and internal pathogenic invaders (as suggested previously). This illustrates how our understanding of the actual role and potential of phages is expanding and how worldwide interest in their use in medicine is growing. In this article we envision how this advancement of our knowledge about phages could be translated into the progress in combating herpesvirus infections especially those caused by Epstein-Barr virus (EBV).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...