Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 46(15): 8025-34, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22788666

RESUMEN

In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ∼0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ∼0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos/análisis , Espectrometría de Masas/métodos , Contaminación por Petróleo , Compuestos Orgánicos Volátiles/análisis , Oxidación-Reducción
2.
Science ; 331(6022): 1295-9, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21393539

RESUMEN

A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons.

3.
Environ Sci Technol ; 39(15): 5674-88, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16124302

RESUMEN

The Aerodyne aerosol mass spectrometer (AMS) was used to characterize physical and chemical properties of secondary organic aerosol (SOA) formed during ozonolysis of cycloalkenes and biogenic hydrocarbons and photo-oxidation of m-xylene. Comparison of mass and volume distributions from the AMS and differential mobility analyzers yielded estimates of "effective" density of the SOA in the range of 0.64-1.45 g/cm3, depending on the particular system. Increased contribution of the fragment at m/z 44, C02+ ion fragment of oxygenated organics, and higher "delta" values, based on ion series analysis of the mass spectra, in nucleation experiments of cycloalkenes suggest greater contribution of more oxygenated molecules to the SOA as compared to those formed under seeded experiments. Dominant negative "delta" values of SOA formed during ozonolysis of biogenics indicates the presence of terpene derivative structures or cyclic or unsaturated oxygenated compounds in the SOA. Evidence of acid-catalyzed heterogeneous chemistry, characterized by greater contribution of higher molecular weight fragments to the SOA and corresponding changes in "delta" patterns, is observed in the ozonolysis of alpha-pinene. Mass spectra of SOA formed during photooxidation of m-xylene exhibit features consistent with the presence of furandione compounds and nitro organics. This study demonstrates that mixtures of SOA compounds produced from similar precursors result in broadly similar AMS mass spectra. Thus, fragmentation patterns observed for biogenic versus anthropogenic SOA may be useful in determining the sources of ambient SOA.


Asunto(s)
Contaminantes Atmosféricos/análisis , Cicloparafinas/análisis , Terpenos/análisis , Xilenos/análisis , Aerosoles , Espectrometría de Masas , Modelos Químicos , Oxidación-Reducción , Ozono/química , Fotoquímica
4.
Environ Sci Technol ; 38(15): 4157-64, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15352455

RESUMEN

The secondary organic aerosol (SOA) yields from the laboratory chamber ozonolysis of a series of cycloalkenes and related compounds are reported. The aim of this work is to investigate the effect of the structure of the hydrocarbon parent molecule on SOA formation for a homologous set of compounds. Aspects of the compound structures that are varied include the number of carbon atoms present in the cycloalkene ring (C5 to C8), the presence and location of methyl groups, and the presence of an exocyclic or endocyclic double bond. The specific compounds considered here are cyclopentene, cyclohexene, cycloheptene, cyclooctene, 1-methyl-1-cyclopentene, 1-methyl-1-cyclohexene, 1-methyl-1-cycloheptene, 3-methyl-1-cyclohexene, and methylenecyclohexane. The SOA yield is found to be a function of the number of carbons present in the cycloalkene ring, with an increasing number resulting in increased yield. The yield is enhanced by the presence of a methyl group located at a double-bonded site but reduced by the presence of a methyl group at a non-double-bonded site. The presence of an exocyclic double bond also leads to a reduced yield relative to that of the equivalent methylated cycloalkene. On the basis of these observations, the SOA yield for terpinolene relative to the other cyclic alkenes is qualitatively predicted, and this prediction compares well to measurements of the SOA yield from the ozonolysis of terpinolene. This work shows that relative SOA yields from ozonolysis of cyclic alkenes can be qualitatively predicted from properties of the parent hydrocarbons.


Asunto(s)
Aerosoles/química , Cicloparafinas/química , Ozono , Aerosoles/análisis , Carbono/análisis , Monoterpenos Ciclohexánicos , Cicloparafinas/análisis , Ácidos Dicarboxílicos/análisis , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Análisis de Componente Principal , Terpenos/análisis , Volatilización
5.
Environ Sci Technol ; 38(12): 3343-50, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15260334

RESUMEN

To isolate secondary organic aerosol (SOA) formation in ozone-alkene systems from the additional influence of hydroxyl (OH) radicals formed in the gas-phase ozone-alkene reaction, OH scavengers are employed. The detailed chemistry associated with three different scavengers (cyclohexane, 2-butanol, and CO) is studied in relation to the effects of the scavengers on observed SOA yields in the ozone-cyclohexene system. Our results confirm those of Docherty and Ziemann that the OH scavenger plays a role in SOA formation in alkene ozonolysis. The extent and direction of this influence are shown to be dependent on the specific alkene. The main influence of the scavenger arises from its independent production of HO2 radicals, with CO producing the most HO2, 2-butanol an intermediate amount, and cyclohexane the least. This work provides evidence for the central role of acylperoxy radicals in SOA formation from the ozonolysis of alkenes and generally underscores the importance of gas-phase radical chemistry beyond the initial ozone-alkene reaction.


Asunto(s)
Aerosoles/química , Ciclohexanos/química , Radical Hidroxilo/química , Oxidantes Fotoquímicos/química , Oxidantes/química , Ozono/química , Ciclohexenos , Fotoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA