Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
J Colloid Interface Sci ; 674: 873-883, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38955018

RESUMEN

Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO2) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method. The prepared interlayer features a three-dimensional (3D) conductive network that serves as a protective barrier and enhances electron/ion transport. Additionally, the CeO2 component effectively chemisorbs and catalytically transforms lithium polysulfides (LiPSs), offering robust chemisorption and activation sites. Moreover, the unique porous structure of the HCON@CNWF not only physically adsorbs LiPSs but also provides ample space for sulfur's volume expansion, thus mitigating the shuttle effect and safeguarding the electrode against damage. These advantages collectively contribute to the battery's outstanding electrochemical performance, notably in retaining a reversible capacity of 80.82 % (792 ± 5.60 mAh g-1) of the initial value after 200 charge/discharge cycles at 0.5C. In addition, the battery with HCON@CNWF interlayer has excellent electrochemical performance at high sulfur loading (4 mg cm-2) and low liquid/sulfur ratio (7.5 µL mg-1). This study, thus, offers a novel approach to designing advanced interlayers that can enhance the performance of LSBs.

2.
Molecules ; 29(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998960

RESUMEN

The United Nations proposed the Sustainable Development Goals with the aim to make human settlements in cities resilient and sustainable. The excessive discharge of urban waste including sludge and garden waste can pollute groundwater and lead to the emission of greenhouse gases (e.g., CH4). The proper recycling of urban waste is essential for responsible consumption and production, reducing environmental pollution and addressing climate change issues. This study aimed to prepare biochar with high adsorption amounts of iodine using urban sludge and peach wood from garden waste. The study was conducted to examine the variations in the mass ratio between urban sludge and peach wood (2/1, 1/1, and 1/2) as well as pyrolysis temperatures (300 °C, 500 °C, and 700 °C) on the carbon yield and adsorption capacities of biochar. Scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectrometry, powder X-ray diffraction, and elemental analysis were used to characterize the biochar produced at different pyrolysis temperatures and mass ratios. The results indicate that the carbon yield of biochar was found to be the highest (>60%) at a pyrolysis temperature of 300 °C across different pyrolysis temperatures. The absorbed amounts of iodine in the aqueous solution ranged from 86 to 223 mg g-1 at a mass ratio of 1:1 between urban sludge and peach wood, which were comparably higher than those observed in other mass ratios. This study advances water treatment by offering a cost-effective method by using biochar derived from the processing of urban sludge and garden waste.


Asunto(s)
Carbón Orgánico , Yodo , Pirólisis , Aguas del Alcantarillado , Carbón Orgánico/química , Yodo/química , Aguas del Alcantarillado/química , Adsorción , Temperatura , Jardines , Espectroscopía Infrarroja por Transformada de Fourier , Ciudades
3.
Heliyon ; 10(11): e32417, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961940

RESUMEN

In order to comprehend the dissimilarities in tobacco quality between Canada and Yunnan, a comparison of the aroma components was conducted using GC-MS and HPLC analysis, coupled with orthogonal partial least squares discriminant analysis (OPLS-DA). The study revealed the detection of a total of 81 aroma components and 22 non-volatile components in both varieties of tobacco leaves. Specifically, there were 102 components of Canada tobacco leaves and 103 components of Yunnan tobacco leaves. Subsequently, a screening was performed on these two types of tobacco leaves, identifying 51 differential components, which accounted for approximately 49.5 % of the overall components detected. Among these, Canada tobacco exhibited a higher concentration of 22 components, comprising roughly 36.4 % of the total, which were primarily composed of semi-volatile organic acids and sesquiterpenes. On the other hand, Yunnan tobacco was characterized by a comparatively higher content of 43 components, constituting approximately 63.6 %, including fatty acid esters, phenols, diterpenes, sugars, and amino acids. Comparatively, Canada tobacco demonstrated elevated levels of fatty acids and sesquiterpenes, while the content of fatty acid esters and diterpenes was relatively lower. These distinctions in aroma components potentially contribute to the varied sensory aroma profiles exhibited by the two types of tobacco.

4.
Phys Chem Chem Phys ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39027937

RESUMEN

Direct conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments C13-mNm/Cu(111) (m = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C2 intermediates and finally changes the fundamental reaction mechanism. The impeded hydrogenation performance of C13/Cu(111) due to the introduced Cu-carbon interaction is dramatically improved by N-doping. Multiple analyses reveal that the promoted electron transfer and the enhanced electron endowing ability of C13-mNm/Cu(111) (m = 1-2) to the co-adsorbed CH3CHxOH (x = 0-1) and H are deemed to be mainly responsible for the remarkable enhancement in hydrogenation ability. From the standpoint of the frontier molecular orbital, the decreased HOMO-LUMO gap and the increased overlap extent of HOMO and LUMO with the doping of N atoms also further verify the more facile hydrogenation reactions. Clearly, the Cu-carbon interaction through N-modification is of critical importance in ethanol formation. The final hydrogenation reaction during ethanol formation is deemed to be the rate-controlling step. The insights gained here could shed new light on the nature of Cu-carbon interaction in carbon material modified Cu-based catalysts for ethanol synthesis, which could be extended to design and modify other metal-carbon catalysts.

5.
Clin Transl Oncol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872053

RESUMEN

BACKGROUND: TP53 is a frequently mutated oncogene within non-small cell lung cancer (NSCLC). However, the clinical and prognostic significance of co-mutations in TP53 in patients with advanced NSCLC has not been fully elucidated. METHODS: A total of 174 patients with advanced NSCLC were enrolled in this study. All patients were subjected to sequencing analysis of tumor-related genes and information such as PD-L1 expression, TMB, and co-mutation changes were collected. Patients were categorized into TP53 mutant and TP53 wild-type groups according to their TP53 mutation status and then statistically analyzed. RESULTS: TP53 mutations were the most common among all patients, accounting for 56.32%, followed by epidermal growth factor receptor mutations at 48.27%. The most common mutation sites in the TP53 mutation group were exons 5-8.TP53 mutations were significantly associated with PD-L1 and TMB levels. Univariate Cox analysis showed that gender and EGFR mutation affected the prognosis of TP53-mutated NSCLC patients, and multivariate Cox regression analysis identified EGFR mutation as an independent risk factor. The OS of NSCLC patients in the TP53 mutation group was significantly shorter than that of the TP53wt group. Survival curves in the TP53/EGFR combined mutation group showed that patients with combined EGFR mutation had a lower survival rate. DISCUSSION: TP53 mutations are associated with different clinical indicators and have important implications in clinical treatment. TP53 is a poor prognostic factor for NSCLC patients, and TP53/EGFR co-mutation will affect the survival time of patients. TP53/EGFR co-mutation may be a new prognostic marker for NSCLC.

6.
Heliyon ; 10(9): e30458, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720732

RESUMEN

Adsorption-desorption experiments of three heavy metal ions (i.e., lead, copper, cadmium) in silty soil were carried out at different temperatures, and the microscopic characteristics of silty soil loaded with the three heavy metal ions were analyzed. A one-dimensional soil column was used to discuss the influences of heavy metal ion types and concentrations on the soil moisture distribution and the migration level of different heavy metal ions, especially during the dynamic change process from an unsaturated state to a saturated state. Studies show that the adsorption of heavy metal ions onto silty soil is closely related to the mineral composition and functional groups in silty soil. In addition to physical adsorption, the adsorption of heavy metal ions is closely related to the hydrolysis reaction of mineral components such as kaolinite, calcite, dolomite, plagioclase and quartz. Under constant temperature, the types and concentrations of heavy metal ions play an important role in the moisture migration of unsaturated soil. In the presence of heavy metal ions, the penetration of lead ions is the greatest, followed by copper ions and then cadmium ions. The greater the ion concentration is, the stronger the penetration of heavy metal ions in silty soils.

7.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760744

RESUMEN

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas , Células Madre Mesenquimatosas , Nanopartículas , Animales , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Diferenciación Celular/efectos de los fármacos , Histona Desacetilasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Masculino , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Núcleo Celular/metabolismo , Curación de Fractura/efectos de los fármacos , Humanos , Proteínas de la Membrana
8.
Signal Transduct Target Ther ; 9(1): 121, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755119

RESUMEN

Anti-PD-1 antibodies are a favorable treatment for relapsed or refractory extranodal natural killer T cell lymphoma (RR-ENKTL), however, the complete response (CR) rate and the duration of response (DOR) need to be improved. This phase 1b/2 study investigated the safety and efficacy of sintilimab, a fully human anti-PD-1 antibody, plus chidamide, an oral subtype-selective histone deacetylase inhibitor in 38 patients with RR-ENKTL. Expected objective response rate (ORR) of combination treatment was 80%. Patients received escalating doses of chidamide, administered concomitantly with fixed-dose sintilimab in 21-days cycles up to 12 months. No dose-limiting events were observed, RP2D of chidamide was 30 mg twice a week. Twenty-nine patients were enrolled in phase 2. In the intention-to-treat population (n = 37), overall response rate was 59.5% with a complete remission rate of 48.6%. The median DOR, progression-free survival (PFS), and overall survival (OS) were 25.3, 23.2, and 32.9 months, respectively. The most common grade 3 or higher treatment-emergent adverse events (AEs) were neutropenia (28.9%) and thrombocytopenia (10.5%), immune-related AEs were reported in 18 (47.3%) patients. Exploratory biomarker assessment suggested that a combination of dynamic plasma ctDNA and EBV-DNA played a vital prognostic role. STAT3 mutation shows an unfavorable prognosis. Although outcome of anticipate ORR was not achieved, sintilimab plus chidamide was shown to have a manageable safety profile and yielded encouraging CR rate and DOR in RR-ENKTL for the first time. It is a promising therapeutic option for this population.


Asunto(s)
Aminopiridinas , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Inhibidores de Histona Desacetilasas , Linfoma Extranodal de Células NK-T , Humanos , Masculino , Femenino , Persona de Mediana Edad , Benzamidas/administración & dosificación , Benzamidas/uso terapéutico , Benzamidas/efectos adversos , Anciano , Linfoma Extranodal de Células NK-T/tratamiento farmacológico , Linfoma Extranodal de Células NK-T/patología , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Adulto , Aminopiridinas/administración & dosificación , Aminopiridinas/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología
9.
J Agric Food Chem ; 72(23): 13099-13110, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38807079

RESUMEN

Whole-grain foods are rich in bound polyphenols (BPs) whose health benefits were largely underestimated compared with free polyphenols. We first found that DFBP (dietary fiber with BPs from oat bran) exhibited stronger colonic antioxidant activities than DF. 16S rRNA sequencing showed that DFBP selectively changed gut microbial composition, which reciprocally released BPs from DFBP. Released polyphenols from DFBP reduced excessive colonic ROS and exhibited colonic antioxidant activities via the ROS/Akt/Nrf2 pathway revealed by transcriptome and western blot analysis. Colonic antioxidant activities of DFBP mediated by gut microbiota were next proven by treating mice with broad-spectrum antibiotics. Next, Clostridium butyricum, as a distinguished bacterium after DFBP intervention, improved colonic antioxidant capacities synergistically with DFBP in HFD-fed mice. This was explained by the upregulated mRNA expression of esterase, and cellulase of Clostridium butyricum participated in releasing BPs. Our results would provide a solid basis for explaining the health benefits of whole grains.


Asunto(s)
Avena , Colon , Dieta Alta en Grasa , Fibras de la Dieta , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Polifenoles , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Ratones , Polifenoles/farmacología , Polifenoles/química , Polifenoles/administración & dosificación , Polifenoles/metabolismo , Avena/química , Avena/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fibras de la Dieta/metabolismo , Fibras de la Dieta/farmacología , Masculino , Dieta Alta en Grasa/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Colon/metabolismo , Colon/microbiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Especies Reactivas de Oxígeno/metabolismo , Humanos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/efectos de los fármacos
10.
Opt Express ; 32(7): 12092-12103, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571042

RESUMEN

To achieve an autonomously controlled reconfigurable microwave waveform generator, this study proposes and demonstrates a self-adjusting synthesis method based on a photonic delay reservoir computer with ring resonator. The proposed design exploits the ring resonator to configure the reservoir, facilitating a nonlinear transformation and providing delay space. A theoretical analysis is conducted to explain how this configuration addresses the challenges of microwave waveform generation. Considering the generalization performance of waveform generation, the simulations demonstrate the system's capability to produce six distinct representative waveforms, all exhibiting a highly impressive root mean square error (RMSE) of less than 1%. To further optimize the system's flexibility and accuracy, we explore the application of various artificial intelligence algorithms at the reservoir computer's output layer. Furthermore, our investigation delves deeply into the complexities of system performance, specifically exploring the influence of reservoir neurons and micro-ring resonator parameters on calculation performance. We also delve into the scalability of reservoirs, considering both parallel and cascaded arrangements.

11.
iScience ; 27(4): 109518, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38585662

RESUMEN

Herbivorous insects have evolved metabolic strategies to survive the challenges posed by plant secondary metabolites (SMs). This study reports an exploration of SMs present in pears, which serve as a defense against invasive Cydia pomonella and native Grapholita molesta and their counter-defense response. The feeding preferences of fruit borers are influenced by the softening of two pear varieties as they ripen. The content of SMs, such as quercetin and rutin, increases due to feeding by fruit borers. Notably, quercetin levels only increase after C. pomonella feeding. The consumption of SMs affects the growth of fruit borer population differently, potentially due to the activation of P450 genes by SMs. These two fruit borers are equipped with specific P450 enzymes that specialize in metabolizing quercetin and rutin, enabling them to adapt to these SMs in their host fruits. These findings provide valuable insights into the coevolution of plants and herbivorous insects.

12.
Front Mol Neurosci ; 17: 1379726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638604

RESUMEN

Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.

13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 713-720, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646759

RESUMEN

The problem of soil barrier caused by excessive accumulation of nitrogen is common in continuous cropping soil of facility agriculture. To investigate the modulating effects of biochar amendment on soil nitrogen transformation in greenhouse continuous cropping systems, we conducted a pot experiment with two treatments, no biochar addition (CK) and 5% biochar addition (mass ratio). We analyzed the effects of biochar addition on soil microbial community structure, abundances of genes functioning in nitrogen cycling, root growth and nitrogen metabolism-related genes expressions of cucumber seedlings. The results showed that biochar addition significantly increased plant height, root dry mass, total root length, root surface area, and root volume of cucumber seedlings. Rhizosphere environment was improved, which enhanced root nitrogen absorption by inducing the up-regulation of genes expressions related to plant nitrogen metabolism. Biochar addition significantly increased soil microbial biomass nitrogen, nitrate nitrogen, and nitrite nitrogen contents. The abundances of bacteria that involved in nitrogen metabolism, including Proteobacteria, Cyanobacteria, and Rhizobiales (soil nitrogen-fixing bacteria), were also significantly improved in the soil. The abundances of genes functioning in soil nitrification and nitrogen assimilation reduction, and the activities of enzymes involved in nitrogen metabolisms such as hydroxylamine dehydrogenase, nitronate monooxygenase, carbonic anhydrase were increased. In summary, biochar addition improved soil physicochemical properties and microbial community, and affected soil nitrogen cycling through promoting nitrification and nitrogen assimilation. Finally, nitrogen adsorption capacity and growth of cucumber plant was increased.


Asunto(s)
Carbón Orgánico , Cucumis sativus , Nitrógeno , Raíces de Plantas , Plantones , Suelo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Nitrógeno/metabolismo , Suelo/química , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Microbiología del Suelo , Agricultura/métodos , Rizosfera
14.
Int J Dev Neurosci ; 84(4): 305-313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566307

RESUMEN

Segawa syndrome is a rare autosomal recessive form of dopa-responsive dystonia resulting from TH gene dysfunction. Patients typically exhibit symptoms such as generalized dystonia, rigidity, tremors, infantile Parkinsonism, and pseudo-spastic paraplegia. Levodopa is often an effective treatment. Due to its rarity, high heterogeneity, and poorly understood pathological mutation and phenotype spectrums, as well as genotype-phenotype and genotype-treatment outcome correlations, Segawa syndrome poses diagnostic and therapeutic challenges. In our study, through clinical and molecular analyses of three Chinese Segawa patients, we re-evaluated the pathogenicity of a TH mutation (c.880G>C;p.G294R) previously categorized as "Conflicting classifications of pathogenicity" in ClinVar. Also, we summarized the clinical phenotypes of all reported Segawa syndrome cases until 2023 and compared them with our patients. We identified a novel phenotype, "cafe-au-lait macules," not previously observed in Segawa patients. Additionally, we discussed the correlation between specific genotypes and phenotypes, as well as genotypes and treatment outcomes of our three cases. Our findings aim to enhance the understanding of Segawa syndrome, contributing to improved diagnosis and treatment approaches in the future.


Asunto(s)
Trastornos Distónicos , Mutación , Humanos , Masculino , Femenino , Trastornos Distónicos/genética , Trastornos Distónicos/terapia , Resultado del Tratamiento , Tirosina 3-Monooxigenasa/genética , Levodopa/uso terapéutico , Niño , Fenotipo , Preescolar , Pueblo Asiatico/genética , China , Heterocigoto , Pueblos del Este de Asia
15.
J Hazard Mater ; 471: 134392, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669932

RESUMEN

Bioavailability assessment of heavy metals in compost products is crucial for evaluating associated environmental risks. However, existing experimental methods are time-consuming and inefficient. The machine learning (ML) method has demonstrated excellent performance in predicting heavy metal fractions. In this study, based on the conventional physicochemical properties of 260 compost samples, including compost time, temperature, electrical conductivity (EC), pH, organic matter (OM), total phosphorus (TP), total nitrogen, and total heavy metal contents, back propagation neural network, gradient boosting regression, and random forest (RF) models were used to predict the dynamic changes in bioavailable fractions of Cu and Zn during composting. All three models could be used for effective prediction of the variation trend in bioavailable fractions of Cu and Zn; the RF model showed the best prediction performance, with the prediction level higher than that reported in related studies. Although the key factors affecting changes among fractions were different, OM, EC, and TP were important for the accurate prediction of bioavailable fractions of Cu and Zn. This study provides simple and efficient ML models for predicting bioavailable fractions of Cu and Zn during composting, and offers a rapid evaluation method for the safe application of compost products.


Asunto(s)
Disponibilidad Biológica , Compostaje , Cobre , Aprendizaje Automático , Zinc , Cobre/análisis , Zinc/análisis , Redes Neurales de la Computación , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/análisis , Fósforo/análisis , Fósforo/química , Nitrógeno/análisis , Suelo/química , Conductividad Eléctrica , Modelos Teóricos
16.
Materials (Basel) ; 17(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38473650

RESUMEN

The evolution of the microstructure and the mechanical properties of a 15-6 martensite precipitated hardened (15-6 PH) stainless steel after thermal treatment and long-term aging at 480 °C were investigated. Compared with 17-4 PH steel, the content of Cr decreased and Ni increased in the newly developed 15-6 PH steel; therefore, reversed austenite formed after thermal treatment at 620 °C of the solution-treated 15-6 PH steel. Although the reversed austenite may reduce the strength of the steel, it is very beneficial for the inhibition of the aging brittleness of the steel. During the accelerated thermal aging at 480 °C, the Cu-rich phase gradually coarsened, and its crystal structure changed, while the reversed austenite phase sightly increased and the Charpy impact energy maintained a rather high value. The increase of the reversed austenite content can offset the reduction of the strengthening effect of the Cu-rich phase and therefore maintain an excellent impact property of the material after thermal aging.

17.
Orphanet J Rare Dis ; 19(1): 133, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521962

RESUMEN

Patients with lymphangioleiomyomatosis (LAM) are considered high risk for most surgeries and require specific anesthetic considerations mainly because of the common spontaneous pneumothorax (PTX). To explore whether intraoperative mechanical ventilation could increase the risk of PTX in those patients, we included 12 surgical patients with LAM in this study, of whom four (33.3%) experienced postoperative PTX. According to our results, patients with higher CT grade, poorer pulmonary function, and a history of preoperative PTX might be more likely to develop postoperative PTX. However, intraoperative mechanical ventilation did not show obvious influence, which might help clinicians reconsider the perioperative management of LAM patients.


Asunto(s)
Neoplasias Pulmonares , Linfangioleiomiomatosis , Neumotórax , Humanos , Neumotórax/epidemiología , Neumotórax/etiología , Linfangioleiomiomatosis/epidemiología , Incidencia , Respiración Artificial/efectos adversos , Neoplasias Pulmonares/cirugía
18.
World J Clin Cases ; 12(7): 1284-1289, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38524517

RESUMEN

BACKGROUND: Gastrinoma is characterized by an excessive release of gastrin, leading to hypersecretion of gastric acid, subsequently resulting in recurrent peptic ulcers, chronic diarrhea, and even esophageal strictures. This case report aims to improve awareness and facilitate early diagnosis and treatment of gastrinoma by presenting a rare case of gastrinoma with refractory benign esophageal stricture (RBES). Additionally, it highlights the persistent challenges that gastroenterologists encounter in managing RBES. CASE SUMMARY: This case demonstrates a patient with gastrinoma who developed RBES and complete esophageal obstruction despite management with maximal acid suppressive therapy, multiple endoscopic bougie dilations and endoscopic incisional therapy (EIT). CONCLUSION: It is essential to diagnose gastrinoma as early as possible, as inadequately controlled acid secretion over an extended period increases the risk of developing severe esophageal strictures. In patients with esophageal strictures causing complete luminal obstruction, blind reopening EIT presents challenges and carries a high risk of perforation.

19.
Neuropsychiatr Dis Treat ; 20: 607-620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525480

RESUMEN

Schizophrenia is a disease with a complex pathological mechanism that is influenced by multiple genes. The study of its pathogenesis is dominated by the dopamine hypothesis, as well as other hypotheses such as the 5-hydroxytryptamine hypothesis, glutamate hypothesis, immune-inflammatory hypothesis, gene expression abnormality hypothesis, and neurodevelopmental abnormality hypothesis. The first generation of antipsychotics was developed based on dopaminergic receptor antagonism, which blocks dopamine D2 receptors in the brain to exert antipsychotic effects. The second generation of antipsychotics acts by dual blockade of 5-hydroxytryptamine and dopamine receptors. From the third generation of antipsychotics onwards, the therapeutic targets for antipsychotic schizophrenia expanded beyond D2 receptor blockade to explore D2 receptor partial agonism and the antipsychotic effects of new targets such as D3, 5-HT1A, 5-HT7, and mGlu2/3 receptors. The main advantages of the second and third generation antipsychotics over first-generation antipsychotics are the reduction of side effects and the improvement of negative symptoms, and even though third-generation antipsychotics do not directly block D2 receptors, the modulation of the dopamine transmitter system is still an important part of their antipsychotic process. According to recent research, several receptors, including 5-hydroxytryptamine, glutamate, γ-aminobutyric acid, acetylcholine receptors and norepinephrine, play a role in the development of schizophrenia. Therefore, the focus of developing new antipsychotic drugs has shifted towards agonism or inhibition of these receptors. Specifically, the development of NMDARs stimulants, GABA receptor agonists, mGlu receptor modulators, cholinergic receptor modulators, 5-HT2C receptor agonists and alpha-2 receptor modulators has become the main direction. Animal experiments have confirmed the antipsychotic effects of these drugs, but their pharmacokinetics and clinical applicability still require further exploration. Research on alternative targets for antipsychotic drugs, beyond the dopamine D2 receptor, has expanded the potential treatment options for schizophrenia and gives an important way to address the challenge of refractory schizophrenia. This article aims to provide a comprehensive overview of the research on therapeutic targets and medications for schizophrenia, offering valuable insights for both treatment and further research in this field.

20.
J Am Chem Soc ; 146(17): 11679-11693, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482849

RESUMEN

Lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics have emerged with promising potentials in the fields of infectious diseases, cancer vaccines, and protein replacement therapies; however, their therapeutic efficacy and safety can still be promoted by the optimization of LNPs formulations. Unfortunately, current LNPs suffer from increased production of reactive oxygen species during translation, which leads to a decreased translation efficiency and the onset of inflammation and other side effects. Herein, we synthesize a lipid-modified poly(guanidine thioctic acid) polymer to fabricate novel LNPs for mRNA vaccines. The acquired G-LNPs significantly promote the translation efficiency of loaded mRNA and attenuate inflammation after vaccination through the elimination of reactive oxygen species that are responsible for translational inhibition and inflammatory responses. In vivo studies demonstrate the excellent antitumor efficacy of the G-LNPs@mRNA vaccine, and two-dose vaccination dramatically increases the population and infiltration of cytotoxic T cells due to the intense antitumor immune responses, thus generating superior antitumor outcomes compared with the mRNA vaccine prepared from traditional LNPs. By synergy with immune checkpoint blockade, the tumor inhibition of G-LNPs@mRNA is further boosted, indicating that G-LNPs-based mRNA vaccines will be powerful and versatile platforms to combat cancer.


Asunto(s)
Vacunas contra el Cáncer , Lípidos , Liposomas , Nanopartículas , ARN Mensajero , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Nanopartículas/química , Animales , Ratones , ARN Mensajero/genética , ARN Mensajero/inmunología , Lípidos/química , Humanos , Ácido Tióctico/química , Ácido Tióctico/farmacología , Polímeros/química , Guanidinas/química , Guanidinas/farmacología , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...