RESUMEN
This study investigates the effect of altitude on the fatty acid composition of pasture grass, yak milk, and yak ghee on the Qinghai-Tibet Plateau, aiming to understand how environmental factors influence the nutritional quality of these products. Samples were collected from four different altitudes and analyzed for fatty acid profiles using gas chromatography. The analysis reveals that higher altitudes are associated with an increased prevalence of beneficial unsaturated fatty acids, such as oleic acid (C18:1) and linoleic acid (C18:2n6c). These findings highlight the significant influence of altitude on yak lipid metabolism, ultimately enhancing the nutritional value of dairy products. This adaptation not only supports the health and resilience of yaks, but also provides vital nutritional benefits to residents in high-altitude regions. The research underscores the importance of further investigations to optimize dairy production practices, ensuring improved food security and health outcomes for residents of the plateau.
RESUMEN
The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.
RESUMEN
The aim of this study was to investigate the effects of ensiled agricultural byproducts from Qinghai-Tibet plateau on growth performance, rumen microbiota, ruminal epithelium morphology, and nutrient transport-related gene expression in Tibetan sheep. Fourteen male Tibetan sheep were randomly assigned to one of two diets: an untreated diet (without silage inoculum, CON, nâ =â 7) or an ensiled diet (with silage inoculum, ESD, nâ =â 7). The total experimental period lasted for 84 d, including early 14 d as adaption period and remaining 70 d for data collection. The ESD increased average daily gain (Pâ =â 0.046), dry matter intake (Pâ <â 0.001), ammonia nitrogen (Pâ =â 0.045), microbial crude protein (Pâ =â 0.034), and total volatile fatty acids concentration (Pâ <â 0.001), and decreased ruminal pH value (Pâ =â 0.014). The proportion of propionate (Pâ =â 0.006) and the copy numbers of bacteria (Pâ =â 0.01) and protozoa (Pâ =â 0.002) were higher, while the proportion of acetate (Pâ =â 0.028) was lower in the sheep fed ESD compared to CON. Pyrosequencing of the 16S ribosomal RNA gene revealed that ESD increased the relative abundance of Firmicutes, Ruminococcus, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, and Christensenellaceae_R-7_group in the rumen (Pâ <â 0.05), while decreased the relative abundance of Bacteroidota, Prevotellaceae_UCG-003, and Veillonellaceae_UCG-001 (Pâ <â 0.05). Analyses with PICRUSt2 and STAMP indicated that the propionate metabolism pathway was enriched in the sheep fed ESD (Pâ =â 0.026). The ESD increased the rumen papillae height (Pâ =â 0.012), density (Pâ =â 0.036), and surface area (Pâ =â 0.001), and improved the thickness of the total epithelia (Pâ =â 0.018), stratum corneum (Pâ =â 0.040), stratum granulosum (Pâ =â 0.042), and stratum spinosum and basale (Pâ =â 0.004). The relative mRNA expression of cyclin-dependent Kinase 2, CyclinA2, CyclinD2, zonula occludens-1, Occludin, monocarboxylate transporter isoform 1 (MCT1), MCT4, sodium/potassium pump, and sodium/hydrogen antiporter 3 were higher in the rumen epithelial of sheep fed ESD than CON (Pâ <â 0.05). Conversely, the relative mRNA expressions of Caspase 3 and B-cell lymphoma-2 were lower in the sheep fed ESD than CON (Pâ <â 0.05). In conclusion, compared with an untreated diet, feeding an ensiled diet altered the rumen microbial community, enhanced nutrient transport through rumen epithelium, and improved the growth performance of Tibetan sheep.
Tibetan sheep on the Qinghai-Tibet Plateau experience significant nutrient stress while a substantial amount of agricultural byproducts in the region go discarded and wasted. In this study, agricultural byproducts were ensiled and fed to the Tibetan sheep to investigate their effects on growth performance, rumen microorganisms, and nutrient transport through rumen epithelial tissues. Fourteen male Tibetan sheep were randomly assigned to one of two diets: untreated diet (without silage inoculum, CON, nâ =â 7) or ensiled diet (with silage inoculum, ESD, nâ =â 7). After 70 d of feeding, the ESD-fed sheep had a higher body weight than CON. The ensiled diet changed the rumen microbial community and increased the relative abundance of cellulolytic bacteria in the rumen. In addition, the ensiled diet also promoted the development of rumen epithelia and improved the relative expression of gene related to nutrient transport. Overall, the ensiled diet optimized the use of agricultural byproducts and significantly contributed to the production of Tibetan sheep.
Asunto(s)
Alimentación Animal , Dieta , Rumen , Ensilaje , Animales , Rumen/microbiología , Ovinos/fisiología , Ovinos/crecimiento & desarrollo , Masculino , Dieta/veterinaria , Alimentación Animal/análisis , Ensilaje/análisis , Tibet , Microbioma Gastrointestinal/efectos de los fármacos , Epitelio , Fenómenos Fisiológicos Nutricionales de los Animales , Distribución Aleatoria , Bacterias/clasificaciónRESUMEN
This study compared the growth performance, serum biochemical indicators, rumen fermentation parameters, rumen bacterial structure, and fecal bacterial structure of cattle and yaks fed for two months and given a feed containing concentrate of a roughage ratio of 7:3 on a dry matter basis. Compared with cattle, yak showed better growth performance. The serum biochemical results showed that the albumin/globulin ratio in yak serum was significantly higher than that in cattle. Aspartate aminotransferase, indirect bilirubin, creatine kinase, lactate dehydrogenase, and total cholesterol were significantly lower in yaks than in cattle. The rumen pH, acetate to propionate ratio, and acetate were lower in yaks than in cattle, whereas the lactate in yaks was higher than in cattle. There were significant differences in the structure of ruminal as well as fecal bacteria between cattle and yaks. The prediction of rumen bacterial function showed that there was a metabolic difference between cattle and yaks. In general, the metabolic pathway of cattle was mainly riched in a de novo synthesis of nucleotides, whereas that of yaks was mainly riched in the metabolic utilization of nutrients. This study provides a basis for understanding a rumen ecology under the condition of a high concentrate diet.
RESUMEN
To better utilize poorly fermented oat silage on the Qinghai Tibetan Plateau, 239 samples of this biomass were collected from the plateau temperate zone (PTZ), plateau subboreal zone (PSBZ), and nonplateau climatic zone (NPCZ) in the region and analyzed for microbial community, chemical composition and in vitro gas production. Climatic factors affect the bacterial α-diversity and ß-diversity of poorly fermented oat silage, which led to the NPCZ having the highest relative abundance of Lactiplantibacillus plantarum. Furthermore, the gas production analysis showed that the NPCZ had the highest maximum cumulative gas emissions of methane. Through structural equation modeling analysis, environmental factors (solar radiation) affected methane emissions via the regulation of lactate production by L. plantarum. The enrichment of L. plantarum contributes to lactic acid production and thereby enhances methane emission from poorly fermented oat silage. Notably, there are many lactic acid bacteria detrimental to methane production in the PTZ. This knowledge will be helpful in revealing the mechanisms of environmental factors and microbial relationships influencing the metabolic processes of methane production, thereby providing a reference for the clean utilization of other poorly fermented silage.
Asunto(s)
Avena , Biocombustibles , Biocombustibles/análisis , Ensilaje/análisis , Tibet , Bacterias/metabolismo , Metano/análisisRESUMEN
Introduction: Manganese (Mn) is an essential trace element for livestock, but little is known about the optimal Mn source and level for yak. Methods: To improve yak's feeding standards, a 48-h in vitro study was designed to examine the effect of supplementary Mn sources including Mn sulfate (MnSO4), Mn chloride (MnCl2), and Mn methionine (Met-Mn) at five Mn levels, namely 35 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, and 70 mg/kg dry matter (includes Mn in substrates), on yak's rumen fermentation. Results: Results showed that Met-Mn groups showed higher acetate (p < 0.05), propionate, total volatile fatty acids (p < 0.05) levels, ammonia nitrogen concentration (p < 0.05), dry matter digestibility (DMD), and amylase activities (p < 0.05) compared to MnSO4 and MnCl2 groups. DMD (p < 0.05), amylase activities, and trypsin activities (p < 0.05) all increased firstly and then decreased with the increase of Mn level and reached high values at 40-50 mg/kg Mn levels. Cellulase activities showed high values (p < 0.05) at 50-70 mg/kg Mn levels. Microbial protein contents (p < 0.05) and lipase activities of Mn-Met groups were higher than those of MnSO4 and MnCl2 groups at 40-50 mg/kg Mn levels. Discussion: Therefore, Mn-met was the best Mn source, and 40 to 50 mg/kg was the best Mn level for rumen fermentation of yaks.
RESUMEN
Sorghum (Sorghum bicolor) is known to have a more robust capability of phosphorus uptake than many other cereal plants, which could be attributed to its phosphate transporter 1 (Pht1) that has a high phosphorus affinity. There are eleven SbPht1 genes in the sorghum genome, nine of which are expressed in sorghum roots or shoots in response to phosphorus deficiency (low-P). The molecular features of these nine genes were investigated by gene expression analysis, subcellular localization, and a yeast mutant complementation growth assay. They were found to be induced in response to low-P stress in root or shoot. All these SbPht1 proteins were found to be localized on the cell membrane, and SbPht1;8 was also detected in the endoplasmic reticulum. These SbPht1s were able to complement the yeast mutant EY917 that lacks all the functional phosphate transporters, and, among them, SbPht1;5, SbPht1;6 and SbPht1;8 could partially complement the yeast mutant strain EY917 in low-P conditions. Overall, these findings demonstrate that SbPht1;5, SbPht1;6, and SbPht1;8 are high-affinity phosphate transporters. SbPht1;5, in particular, is specifically involved in phosphorus uptake in the roots, whilst SbPht1;6 and SbPht1;8 are key players in both P uptake and P transport in response to low-P stress in sorghum.
Asunto(s)
Proteínas de Transporte de Fosfato , Sorghum , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Sorghum/genética , Sorghum/metabolismo , Grano Comestible/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Fósforo/metabolismoRESUMEN
There is little information available on milk intake and energy and nitrogen requirements of growing yak calves. This study aimed to fill this important gap, as this information could be beneficial in designing a system to wean yak calves earlier than in natural time. We determined the average daily gain and energy and nitrogen balances and requirements of 4-month-old female yak calves (48.8 ± 2.45 kg, n = 8). The calves were allowed to suck once a day and were fed an ad libitum concentrate: hay diet at a ratio of 60:40. Milk intake averaged 540 ± 26 g/d, yielding 2.28 ± 0.112 MJ/d, which was 13% of the gross energy intake (GEI). The digestible energy intake (DEI):GEI ratio was 0.681, metabolizable energy intake (MEI):DEI was 0.913, and MEI:GEI was 0.621. The average daily gain of the calves was 433 ± 153.1 g/d, which consisted of 78.0 ± 8.99 g protein, 52.7 ± 23.74 g fat, and 302.3 ± 95.1 g water, that is, 18.0% protein, 13.0% fat and 69.8% water. There were 130.7 g of body solids and 9.06 MJ of energy in every kg of body mass gain. Of the MEI, 25.17 kJ were required for 1 g of body mass, 83.40 kJ for 1 g of body solids, and 2.62 kJ for 1 kJ of retained energy (RE), and RE was 36.6% of MEI. The maintenance energy requirement was 5.35 MJ/d, the efficiency of utilization of energy for growth (kg) was 0.72, and the heat increment of feeding for growth was 0.28 (1.55 MJ/d). Digestible nitrogen (N) was 0.685 while retained N (RN) was 0.489 of N intake. The N requirement for maintenance was 11.73 g/d or 0.61 g N/kg0.75 per day, while the biological value (BV) of N was 91.1%. The energy and N requirements for yak calves were relatively low, which could be explained, at least in part, by the high efficiency of utilization of energy and high BV of N when compared to other livestock. These findings could be beneficial in designing early weaning systems for the many Himalayan households depending on yak production for their livelihoods.
RESUMEN
Fabaceans symbiotically interact with nitrogen-fixing rhizobacteria to form root nodules. Some fabacean specific proteins play important roles in the symbiosis. WRKY-related Protein (WRP) is a novel fabacean specific protein, whose functions have not been well characterized. In this study, MtWRP1 was functionally characterized in Medicago truncatula. It contains a WRKY domain at C-terminal and a novel transmembrane (TM) domain at N-terminal, and its WRKY domain was highly similar to the N-terminal WRKY domain of the group I WRKY proteins. The TM domain was highly homologous to the eukaryotic cytochrome b561 (Cytb561) proteins from birds. Subcellular localization revealed that MtWRP1 was targeted to the Golgi apparatus through the novel TM domain. MtWRP1 was highly expressed in roots and nodules, suggesting its possible roles in the regulation of root growth and nodulation. Both MtWRP1-overexpression transgenic M. truncatula and MtWRP1 mutants showed altered root nodulation and plant growth performance. Specifically, the formation of root nodules was significantly reduced in the absence of MtWRP1. These results demonstrated that MtWRP1 plays critical roles in root nodulation and plant growth.
Asunto(s)
Medicago truncatula , Medicago truncatula/microbiología , Nitrógeno/metabolismo , Fijación del Nitrógeno , Desarrollo de la Planta , Simbiosis/genéticaRESUMEN
BACKGROUND: Phosphorus (P) deficiency in soil is a worldwide issue and a major constraint on the production of sorghum, which is an important staple food, forage and energy crop. The depletion of P reserves and the increasing price of P fertilizer make fertilizer application impractical, especially in developing countries. Therefore, identifying sorghum accessions with low-P tolerance and understanding the underlying molecular basis for this tolerance will facilitate the breeding of P-efficient plants, thereby resolving the P crisis in sorghum farming. However, knowledge in these areas is very limited. RESULTS: The 29 sorghum accessions used in this study demonstrated great variability in their tolerance to low-P stress. The internal P content in the shoot was correlated with P tolerance. A low-P-tolerant accession and a low-P-sensitive accession were chosen for RNA-seq analysis to identify potential underlying molecular mechanisms. A total of 2089 candidate genes related to P starvation tolerance were revealed and found to be enriched in 11 pathways. Gene Ontology (GO) enrichment analyses showed that the candidate genes were associated with oxidoreductase activity. In addition, further study showed that malate affected the length of the primary root and the number of tips in sorghum suffering from low-P stress. CONCLUSIONS: Our results show that acquisition of P from soil contributes to low-P tolerance in different sorghum accessions; however, the underlying molecular mechanism is complicated. Plant hormone (including auxin, ethylene, jasmonic acid, salicylic acid and abscisic acid) signal transduction related genes and many transcriptional factors were found to be involved in low-P tolerance in sorghum. The identified accessions will be useful for breeding new sorghum varieties with enhanced P starvation tolerance.
Asunto(s)
Fósforo/deficiencia , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Sorghum/genética , Grano Comestible/genética , Grano Comestible/fisiología , Perfilación de la Expresión Génica , Suelo/química , Sorghum/fisiologíaRESUMEN
Myostatin (MSTN) is a member of the TGF-ß superfamily that acts as a negative regulator of skeletal muscle growth. A full-length, 2 180 bp, cDNA sequence of the myostatin gene from Schizopygopisis pylzovi was cloned with RT-PCR,5'-RACE and 3'-RACE and the cDNA clone included a 1 128 bp ORF, encoding a 375 amino acid peptide. Using PCR, we obtained the sequences of two introns of the MSTN gene and found that its structure in Schizopygopsis pylzovi was similar to that of other vertebrates, including three exons and two introns. Likewise, the putative MSTN peptide of Schizopygopsis pylzovi contains a conserved RXXR proteolytic cleavage domain, and 8 conserved cysteine residues in the C terminal of the protein, similar to other vertebrates. Phylogenetic analysis showed that the MSTN of Schizopygopsis pylzovi has high homology with other cyprinid fishes, but a low homology with mammals and birds. In the 9 examined tissues, the MSTN gene was highly expressed in heart, kidney, intestine and spermary, while weakly expressed in muscle, brain, fat, gill and hepatopancreas. Quantitative real-time PCR analysis showed that the expression of MSTN gene was different during embryo development, suggesting that the fish MSTN may not only play roles in muscle development but also contribute to other biological functions.