Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968998

RESUMEN

Artificial insemination (AI) and embryo transfer (ET) are important in the reproduction of dairy cows. The conception rate after AI or ET is an essential indicator when selecting appropriate breeding methods. However, information on the environmental factors affecting ET conception rate when compared with AI is limited. We aimed to investigate environmental factors affecting ET conception rate and characterize the differences in environmental factors between AI and ET. Records of the first AI (n = 1,870,143) and ET (n = 29,922) from Holstein nulliparous, primiparous, and multiparous cows in Hokkaido, Japan, were analyzed using separate multivariable logistic regression models. For each breeding method, we grouped primiparous and multiparous cows according to milk yield at peak lactation (PY; < 25, 25-30, 30-35, ≥ 35 kg in primiparous, < 40, 40-45, 45-50, ≥ 50 kg in multiparous) and the interval from calving to first AI or ET (CFI/CFT; < 60, 60-79, 80-99, ≥ 100 d) to evaluate the effects of PY and CFI/CFT on conception rate. AI conception rate decreased with increasing PY in primiparous and multiparous cows, whereas ET conception rate did not decrease significantly. Additionally, the ET conception rate did not decrease even in primiparous and multiparous cows slightly earlier than 60 d in CFI/CFT when compared with those in CFI/CFT after 60 d, which differed from the AI conception rate. Collectively, breeding by ET leads to the avoidance of negative effects of high milk yield and calving on the conception rate, indicating that cows are fertile by ET within 60 d after calving.

2.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39077779

RESUMEN

The Hippo pathway plays a crucial role in cell proliferation and differentiation during tumorigenesis, tissue homeostasis and early embryogenesis. Scaffold proteins from the ezrin-radixin-moesin (ERM) family, including neurofibromin 2 (NF2; Merlin), regulate the Hippo pathway through cell polarity. However, the mechanisms underlying Hippo pathway regulation via cell polarity in establishing outer cells remain unclear. In this study, we generated artificial Nf2 mutants in the N-terminal FERM domain (L64P) and examined Hippo pathway activity by assessing the subcellular localization of YAP1 in early embryos expressing these mutant mRNAs. The L64P-Nf2 mutant inhibited NF2 localization around the cell membrane, resulting in YAP1 cytoplasmic translocation in the polar cells. L64P-Nf2 expression also disrupted the apical centralization of both large tumor suppressor 2 (LATS2) and ezrin in the polar cells. Furthermore, Lats2 mutants in the FERM binding domain (L83K) inhibited YAP1 nuclear translocation. These findings demonstrate that NF2 subcellular localization mediates cell polarity establishment involving ezrin centralization. This study provides previously unreported insights into how the orchestration of the cell-surface components, including NF2, LATS2 and ezrin, modulates the Hippo pathway during cell polarization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Polaridad Celular , Proteínas del Citoesqueleto , Vía de Señalización Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor , Proteínas Señalizadoras YAP , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Animales , Ratones , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Transducción de Señal , Embrión de Mamíferos/metabolismo , Mutación/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transporte de Proteínas , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
3.
Sci Rep ; 13(1): 23058, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155240

RESUMEN

Heteroplasmic mammalian embryos between genetically distant species fail to develop to term, preventing transmission of xenomitochondrial DNA to progeny. However, there is no direct evidence indicating the mechanisms by which species specificity of the mitochondrial genome is ensured during mammalian development. Here, we have uncovered a two-step strategy underlying the prevention of xenomitochondrial DNA transmission in mouse embryos harboring bovine mitochondria (mtB-M embryos). First, mtB-M embryos showed metabolic disorder by transient increase of reactive oxygen species at the 4-cell stage, resulting in repressed development. Second, trophoblasts of mtB-M embryos led to implantation failure. Therefore, we tested cell aggregation with tetraploid embryos to compensate for the placentation of mtB-M embryos. The 14 mtB-M embryos harboring bovine mtDNAs developed to term at embryonic day 19.5. Taken together, our results show that contamination of bovine mtDNA is prohibited by embryonic lethality due to metabolic disruption and failure of placentation, suggesting these represent xenomitochondrial elimination mechanisms in mammalian embryos.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Embarazo , Femenino , Ratones , Animales , Bovinos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Embrión de Mamíferos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Desarrollo Embrionario , Mamíferos/metabolismo
4.
Reproduction ; 166(6): 411-421, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855434

RESUMEN

In brief: Interferon tau (IFNT) stimulates lysosomal activation via the Janus-activated kinase in peripheral blood leukocytes during pregnancy recognition. IFNT-mediated lysosomal activation could serve as a novel marker for early pregnancy in cattle. Abstract: IFNT is important in establishing pregnancy in ruminants. Secreted IFNT in the uterus induces the expression of an interferon-stimulated gene (ISG) in uterine tissues and peripheral blood leukocytes (PBLs). In our previous study, increased lysosome and lysosomal cathepsin (CTS) activity and mRNA expression were observed in PBLs of pregnant cows on day 18 of pregnancy. However, the mechanism of IFNT stimulation in PBLs is unclear. Here, we explored the IFNT-mediated lysosomal activation mechanisms in PBLs during early pregnancy in dairy cows. PBLs collected from the peripheral blood of Holstein cows on day 18 post artificial insemination, after confirmation of their pregnancy status, were used to detect the expression of lysosomal-associated membrane protein (LAMP) 1, 2, CTSB and CTSK. Expression of all genes was significantly higher in PBLs of pregnant cows than in nonpregnant cows. In vitro IFN-mediated stimulation of PBLs collected from cows that did not undergo AI significantly increased lysosomal acidification and expression of LAMP1 and 2, as well as the activities of CTSB and CTSK. Immunodetection analysis showed an increase in LAMP1 and CTSK levels in the PBLs of day 18 pregnant cows. JAK inhibitor significantly decreased lysosomal acidification, CTSK activity, LAMP1, 2, and CTSK expression in the presence of IFNT. These results suggest that IFNT regulates lysosomal function via a type 1IFN-mediated pathway in PBLs during pregnancy recognition.


Asunto(s)
Interferón Tipo I , Leucocitos , Femenino , Bovinos , Embarazo , Animales , Leucocitos/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal , Lisosomas
5.
Front Endocrinol (Lausanne) ; 14: 1075030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923228

RESUMEN

Prostaglandin E2 (PGE2) is considered as a luteoprotective factor, influencing the corpus luteum during the early pregnant period in the bovine species. Cyclic AMP (cAMP) is activated in response to PGE2 and plays a role in many physiological processes. The maternal recognition signal, interferon τ (IFNT), induces PGE2 secretion from the endometrial epithelial cells, the function of which in stroma cells has not been completely understood. In this study, PGE2 was found to activate cAMP in the bovine endometrial stromal cells (STRs). STRs were then treated with forskolin to activate the cAMP signaling, from which RNA extracted was subjected to global expression analysis. Transcripts related to transcription regulatory region nucleic acid binding of molecular function, nucleus of cellular component, and mitotic spindle organization of biological processes were up-regulated in cAMP-activated bovine STRs. An increase in the transcription factors, NFIL3, CEBPA, and HIF1A via the cAMP/PKA/CREB signaling pathway in the bovine STRs was also found by qPCR. Knockdown of NFIL3, CEBPA, or HIF1A blocked forskolin-induced PTGS1/2 and IGFBP1/3 expression. Moreover, NFIL3 and CEBPA were localized in endometrial stroma on pregnant day 17 (day 0 = estrous cycle), but not on cyclic day 17. These observations indicated that uterine PGE2 induced by conceptus IFNT is involved in the early pregnancy-related gene expression in endometrial stromal cells, which could facilitate pregnancy establishment in the bovine.


Asunto(s)
Dinoprostona , Células del Estroma , Embarazo , Femenino , Bovinos , Animales , Dinoprostona/metabolismo , Colforsina/farmacología , Colforsina/metabolismo , Células del Estroma/metabolismo , Células Epiteliales/metabolismo
6.
J Reprod Dev ; 69(2): 103-108, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36801858

RESUMEN

The present study investigated the applicability of a calving prediction model based on supervised machine learning of ruminal temperature (RT) data in dairy cows. The existence of cow subgroups for prepartum RT changes was also examined, and the predictive performance of the model was compared among these subgroups. RT data were collected from 24 Holstein cows at 10 min intervals using an RT sensor system. The average hourly RT was calculated and data were expressed as residual RTs (rRT = actual RT - mean RT for the same time on the previous three days). The mean rRT decreased beginning at approximately 48 h before calving to a low of -0.5°C at 5 h before calving. However, two cow subgroups were identified: cows with a late and small rRT decrease (Cluster 1, n = 9) and those with an early and large rRT decrease (Cluster 2, n = 15). A calving prediction model was developed using five features extracted from the sensor data (indicative of prepartum rRT changes) through a support vector machine. Cross-validation showed that calving within 24 h was predicted with a sensitivity of 87.5% (21/24) and precision of 77.8% (21/27). A significant difference in sensitivity was observed between Clusters 1 and 2 (66.7 vs. 100%, respectively), while none was observed for precision. Therefore, the model based on RT data with supervised machine learning has the potential to efficiently predict calving, although improvements for specific cow subgroups are required.


Asunto(s)
Temperatura Corporal , Parto , Embarazo , Femenino , Bovinos , Animales , Temperatura , Aprendizaje Automático Supervisado , Análisis por Conglomerados , Lactancia
7.
Theriogenology ; 198: 183-193, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592516

RESUMEN

The effect of vitamin K on bovine endometrial epithelial cells has not been thoroughly investigated. The objective of this study was to examine the effect of the biologically active form of vitamin K, menaquinone-4, on gene expression in bovine endometrial epithelial cells. First, we examined the mRNA and protein expression levels of UBIAD1, a menaquinone-4 biosynthetic enzyme. Second, we screened for potential target genes of menaquinone-4 in bovine endometrial epithelial cells using RNA-sequencing. We found 50 differentially expressed genes; 42 were upregulated, and 8 were downregulated. Among them, a dose-dependent response to menaquinone-4 was observed for the top three upregulated (TRIB3, IL6, and TNFAIP3) and downregulated (CDC6, ORC1, and RRM2) genes. It has been suggested that these genes play important roles in reproductive events. In addition, GDF15 and VEGFA, which are important for cellular functions as they are commonly involved in pathways, such as positive regulation of cell communication, cell differentiation, and positive regulation of MAPK cascade, were upregulated in endometrial epithelial cells by menaquinone-4 treatment. To the best of our knowledge, this is the first study showing the expression of UBIAD1 in the bovine uterus. Moreover, the study determined menaquinone-4 target genes in bovine endometrial epithelial cells, which may positively affect pregnancy with alteration of gene expression in cattle uterus.


Asunto(s)
Endometrio , Vitamina K , Femenino , Bovinos , Animales , Vitamina K 2/metabolismo , Vitamina K 2/farmacología , Vitamina K/metabolismo , Endometrio/metabolismo , Células Epiteliales/metabolismo
8.
J Steroid Biochem Mol Biol ; 225: 106181, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150639

RESUMEN

Progesterone (P4) is a well-known steroid hormone that plays a key role in oocyte growth and the maintenance of pregnancy in mammals, including cattle. Heat stress (HS) has an adverse effect on P4 synthesis through an imbalance in the cellular redox status. We have recently revealed that a standardized extract of Asparagus officinalis stem (EAS) increases P4 through non-HS induction of heat shock protein 70 (HSP70) and a synergistic increase of HSP70 by enhancing the intracellular redox balance, which was adversely affected by HS in bovine granulosa cells (GCs). Bovine GCs collected from bovine ovarian follicles were cultured at 38.5 °C and 41 °C for 12 h with or without 5 mg/mL EAS. After treatment, cells and culture suppernatant were collected for the analysis. Enzyme-linked immunosorbent assay (ELISA) was performed to detect in P4 levels. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) was used to detect expression of steroidogenesis related genes. Fluorescence staining was used to detect mitochondrial activity and lipid droplet. P4 level was increased by EAS treatment in association with increase in steroidogenic acute regulatory protein (STAR), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), mitochondrial membrane activity and lipid droplet both under non-HS and HS conditions. Notably, synergistic effect of EAS with HS co-treatment was observed to show a greater increase in P4 synthesis when comparison with EAS treatment under non-HS condition. Furthermore, inhibition of HSP70 significantly reduced EAS-induced P4 synthesis, mitochondrial activity and synthesis of lipid droplets. These results suggest that P4 synthesis by EAS is mediated by the steroidogenesis pathway via HSP70-regulated activation of STAR and 3ß-HSD, together with improved mitochondrial activity and lipid metabolism in bovine GCs. Moreover, effect of EAS has a synergistic effect of with HSP70-regulated steroidogenesis pathway.


Asunto(s)
Asparagus , Progesterona , Femenino , Bovinos , Animales , Progesterona/metabolismo , Asparagus/metabolismo , Gotas Lipídicas/metabolismo , Células de la Granulosa/metabolismo , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Extractos Vegetales/farmacología , Mamíferos/metabolismo
9.
Biol Reprod ; 107(5): 1228-1241, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35948000

RESUMEN

The zona pellucida plays a crucial role in the process of fertilization to early embryonic development, including cellular arrangement and communication between blastomeres. However, little is known regarding the role of the zona pellucida in pre- and post-implantation embryonic development associated with gene expression. We investigated the effect of zona pellucida removal on pre- and post-implantation development of mouse embryos. After zona pellucida removal of two-cell stage embryos was performed by acid Tyrode's solution, which is commonly used for zona pellucida treatment, compaction occurred earlier in zona pellucida-free than zona pellucida-intact embryos. In addition, the expression of differentiation-related genes in the inner cell mass and trophectoderm was significantly altered in zona pellucida-free blastocyst compared with zona pellucida-intact embryos. After embryo transfer, the rate of implantation and live fetuses was lower in zona pellucida-free embryos than in control embryos, whereas the fetal weight at E17.5 was not different. However, placental weight significantly increased in zona pellucida-free embryos. RNA-sequencing analysis of the placenta showed that a total of 473 differentially expressed genes significantly influenced the biological process. The present study suggests that zona pellucida removal by acid Tyrode's solution at the two-cell stage not only disturbs the expression pattern of inner cell mass-/trophectoderm-related genes but affects the post-implantation development of mouse embryos. Overall, this study provides deeper insight into the role of the zona pellucida during early embryonic development and the viability of post-implantation development.


Asunto(s)
Placenta , Zona Pelúcida , Femenino , Ratones , Embarazo , Animales , Blastocisto , Desarrollo Embrionario , Expresión Génica
10.
J Reprod Dev ; 68(5): 299-306, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-35871572

RESUMEN

Since the discovery of interferon-tau (IFNT) over 30 years ago as the trophectodermal cytokine responsible for the maintenance of the maternal corpus luteum (CL) in ruminants, exhaustive studies have been conducted to identify genes and gene products related to CL maintenance. Recent studies have provided evidence that although CL maintenance, with the up- and down-regulation of IFNT, is important, its regulatory role in the endometrial expression of interferon-stimulated genes (ISGs) is far more important for conditioning the uterine environment for successful conceptus implantation and thereafter. This review initially describes the mammalian implantation process, briefly but focuses on recent findings, as there appears to be a common phenomenon during early to mid-pregnancy among mammalian species.


Asunto(s)
Interferón Tipo I , Animales , Cuerpo Lúteo/metabolismo , Implantación del Embrión , Endometrio/metabolismo , Femenino , Interferón Tipo I/metabolismo , Embarazo , Rumiantes/metabolismo , Útero/metabolismo
11.
J Reprod Dev ; 68(5): 330-334, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-35908958

RESUMEN

Conventional culture systems for bovine embryos are unable to support sustained embryonic development until the developmentally mature blastocyst stage. Although we have previously developed an on-gel culture system that enables bovine blastocysts to complete cell segregation events at day (D) 10 following in vitro culture, the development of D10 blastocysts to term has yet to be achieved. In this study, we attained full-term development of D10 mature blastocysts produced using an on-gel culture system. Two calves derived from on-gel-cultured embryos were vaginally born, showing normal birth and placental weights and no obvious morphological abnormalities. Moreover, we detected no abnormalities in blood metabolic profile analyses. Our findings indicate that on-gel culturing can be used to facilitate the development of developmentally mature blastocysts to term, and produce healthy viable calves. This culture system could make a valuable contribution to cattle production and would enable a range of analyses for characterizing bovine-specific pre-implantation development.


Asunto(s)
Blastocisto , Placenta , Animales , Bovinos , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario , Femenino , Fertilización In Vitro/veterinaria , Embarazo
12.
J Dairy Sci ; 105(8): 6947-6955, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35773035

RESUMEN

Dairy cattle must allocate energy to milk production and reproduction. Therefore, understanding the environmental factors that affect conception rates in nulliparous and primiparous cows is helpful in appropriate feeding management strategies before and after calving. Accordingly, the aim of this study was to investigate the influence of environmental factors before and after the first calving on the conception rate, representing the starting point of milk production. The records of the first artificial insemination (AI) from Holstein nulliparous cows (n = 533,672) and primiparous cows (n = 516,710) in Hokkaido, Japan, were analyzed using separate multivariable logistic regression models. The mean conception rates for nulliparous and primiparous cows from 2012 to 2018 were 55.2 and 39.2%, respectively. In both nulliparous and primiparous cows, the conception rate of crossbreeding using Japanese Black (JB) semen was significantly higher than that for purebred Holstein breeding. The conception rate using sexed semen decreased in the warmer months only in nulliparous cows. Moreover, we grouped primiparous cows according to milk yield during peak lactation (PY; < 25, 25-30, 30-35, ≥35 kg) and the interval from calving to first insemination (CFI; < 60, 60-79, 80-99, ≥100 d), and evaluated their combined effect on the conception rate. Both PY and CFI strongly affected the conception rate in primiparous cows, which decreased with an increase in PY, even for the group with CFI ≥100 d; however, the conception rate increased for a CFI ≥60 d regardless of PY. Taken together, this study demonstrates the long-term effect of PY and an independent effect of CFI on the conception rate of cows. These results provide guidance for management to execute appropriate AI implementation strategies before and after lactation.


Asunto(s)
Lactancia , Fitomejoramiento , Animales , Bovinos , Femenino , Inseminación Artificial/métodos , Inseminación Artificial/veterinaria , Leche , Paridad , Embarazo , Reproducción
13.
Theriogenology ; 185: 121-126, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35397307

RESUMEN

Intracytoplasmic sperm injection (ICSI), oocyte vitrification after ovum pick-up (OPU), and in vitro maturation are reproductive technologies with incredible potential for efficient cattle production. However, the developmental competence of embryos produced by ICSI using vitrified OPU oocytes remains unknown. Here, we aimed to evaluate the developmental competence of these embryos from the early embryo period to full term. The cleavage rate in the ICSI embryos using vitrified OPU oocytes during in vitro culture was significantly lower than those in control in vitro fertilized (IVF) embryos using fresh OPU oocytes (30.9 ± 4.5% v.s. 65.9 ± 7.0%) (P < 0.05), but the proportion of blastocysts to cleaved embryos was significantly higher than those of IVF embryos using vitrified OPU oocytes (55.9 ± 10.8% v.s. 23.2 ± 9.3%) (P < 0.05). To further investigate the transcription levels of genes related to cell differentiation in ICSI embryos using vitrified OPU oocytes, the relative abundance of mRNAs (OCT4, NANOG, SOX2, CDX2, GATA3, and IFNT) was analyzed by quantitative reverse-transcription PCR. There were no significant differences in the expression levels between ICSI embryos using vitrified OPU oocytes and control IVF embryos. Finally, developmental competence to term in ICSI embryos using vitrified OPU oocytes was examined by embryo transfer, and two healthy calves were born. These findings confirmed that ICSI and vitrification decrease developmental rates in vitro, but both procedures can lead to full-term development of bovine embryos. These results demonstrate that ICSI embryos using vitrification OPU oocytes are viable for cattle production.


Asunto(s)
Oocitos , Inyecciones de Esperma Intracitoplasmáticas , Animales , Blastocisto , Bovinos , Fertilización In Vitro/veterinaria , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Vitrificación
14.
Genes (Basel) ; 13(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205369

RESUMEN

Recovery of bovine oocytes using the ovum pick-up (OPU) technique offers the advantage of rapid genetic improvement through propagation of desired genes from animals with high genetic qualities. However, the developmental competence of OPU-derived immature oocytes remains relatively poor. We previously found that cathepsin B gene expression and activity are increased in poor quality oocytes and embryos compared to good quality ones. In this study, we investigated the effect of E-64 (cathepsin B inhibitor) supplementation during in vitro maturation (IVM) on the developmental competence of OPU-derived immature oocytes and the quality of the produced blastocysts. Our results showed that supplementation of IVM medium with E-64 significantly improved the developmental competence of OPU-derived immature oocytes as evidenced by the significant increase of the blastocyst rate. Importantly, the presence of E-64 during IVM also significantly improved blastocyst quality by increasing the total cell number and decreasing the percentage of TUNEL positive cells. These results indicate that E-64 supplementation during IVM is a promising tool to improve the efficiency of OPU-IVF program by improving the developmental competence of OPU-derived immature oocytes.


Asunto(s)
Catepsina B , Fertilización In Vitro , Animales , Catepsina B/genética , Catepsina B/metabolismo , Bovinos , Suplementos Dietéticos , Leucina/análogos & derivados , Oocitos/metabolismo
15.
Anim Sci J ; 93(1): e13680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35029011

RESUMEN

The effect of dietary vitamin K3 (VK3) on ruminant animals is not fully investigated. The aim of this study was to examine the effects of dietary VK3 on lactation performance, rumen characteristics, and VK1 and menaquinone (MK, or VK2) dynamics in the rumen, plasma, and milk of dairy cows. Eight Holstein dairy cows in late lactation periods were used in two crossover trials including a control (nontreatment) and a 50 or 200 mg/day (d) VK3 supplementation group. After 14 days, plasma, ruminal fluid, and milk were sampled and their VK1 and MKs contents were measured using fluorescence-high-performance liquid chromatography (HPLC). Milk production was unchanged after feeding 50 mg/day VK3 but marginally decreased after feeding 200 mg/day VK3. The molar ratio of propionate in ruminal fluid was significantly increased on feeding 200 mg/day VK3. Additionally, MK-4 concentrations significantly increased in both plasma and milk after VK3 feeding (50 and 200 mg/day). In ruminal fluid, MK-4 concentrations increased after 200 mg/day VK3 feeding. These results suggest that VK3 may be a good source of MK-4, the biologically active form of VK, in Holstein dairy cows during their late lactation periods. This study provides a basis for understanding the physiological role of VK in dairy cows.


Asunto(s)
Alimentación Animal , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión , Femenino , Fermentación , Lactancia , Leche , Rumen/metabolismo , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo , Vitamina K 2/farmacología , Vitamina K 3/metabolismo
16.
Biochem Biophys Res Commun ; 584: 1-6, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34741809

RESUMEN

GATA factors are essential transcription factors for embryonic development that broadly control the transcription of other genes. This study aimed to examine GATA2 protein localization in mouse embryos at the 2-cell stage, when drastic transformation in gene expression occurs for subsequent development in early embryos. We first analyzed GATA2 localization in 2-cell embryos at the interphase and mitotic phases by immunofluorescence analysis. In the interphase, GATA2 protein was localized in the nucleus, as a common transcription factor. In the mitotic phase, GATA2 protein was observed as a focally-aggregated spot around the nucleus of each blastomere. To explore the relationship between GATA2 protein localization and cell cycle progression in mouse 2-cell stage embryos, GFP-labeled GATA2 protein was overexpressed in the blastomere of 2-cell embryos. Overexpression of GFP-labeled GATA2 protein arrested cellular mitosis, focally aggregated GATA2 protein expression was not observed. This mitotic arrest by GATA2 overexpression was not accompanied with the upregulation of a 2-cell stage specific gene, murine endogenous retrovirus-L. These results suggest that GATA2 protein localization changes dynamically depending on cell cycle progression in mouse 2-cell embryos; in particular, focally aggregated localization of GATA2 in the mitotic phase requires appropriate cell cycle progression.


Asunto(s)
Blastocisto/metabolismo , Ciclo Celular/genética , Núcleo Celular/genética , Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Blastocisto/citología , Blastómeros/citología , Blastómeros/metabolismo , Núcleo Celular/metabolismo , Femenino , Factor de Transcripción GATA2/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interfase/genética , Ratones Endogámicos ICR , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
17.
Theriogenology ; 175: 69-76, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34508968

RESUMEN

Cellular differentiation induces various morphological changes, including elongation, in mitochondria. Preimplantation embryos have round-shaped mitochondria, characteristic of undifferentiated cells. However, there is controversy regarding the precise mitochondrial morphology in blastocyst embryos, which are generated from two cell lineages: undifferentiated inner cell mass (ICM) and differentiated trophectoderm (TE). This study attempted to precisely determine mitochondrial morphology in these two blastocyst regions. Transmission electron microscopy analyses were conducted using more than 1000 mitochondria from blastocyst embryos. No significant differences were observed in the configuration of mitochondrial cristae and frequencies of hooded mitochondria, which are specific to embryos of livestock animals, between the ICM and TE. To accurately compare mitochondrial roundness between the ICM and TE, oblateness was calculated based on both the major and minor axes. Average oblateness was significantly greater in the TE than in the ICM (P < 0.01). These results indicate tissue-specific mitochondrial maturation with complete elongation in the TE at the blastocyst stage. Since mitochondrial elongation is closely associated with cellular metabolism and differentiation, the present study provides new insights for better understanding of early embryonic development in cattle.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Animales , Blastocisto/metabolismo , Masa Celular Interna del Blastocisto , Bovinos , Linaje de la Célula , Femenino , Mitocondrias , Embarazo
18.
FASEB J ; 35(10): e21904, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34569650

RESUMEN

Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "on-gel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic reduction of pluripotency-related genes, TE cells highly expressed Wnt, FGF, and VEGF signaling pathways-related genes to facilitate the functional maturation required for feto-maternal interaction. Quantitative PCR analysis of TE cells derived from on-gel culture further confirmed time-dependent increments in the expression of key TE markers. Altogether, the present study provides platforms to understand species-specific strategies for mammalian preimplantation development.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Blastocisto/metabolismo , Linaje de la Célula , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Animales , Bovinos
19.
Sci Rep ; 11(1): 18175, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518614

RESUMEN

Heat shock (HS) protein 70 (HSP70), a well-known HS-induced protein, acts as an intracellular chaperone to protect cells against stress conditions. Although HS induces HSP70 expression to confer stress resistance to cells, HS causes cell toxicity by increasing reactive oxygen species (ROS) levels. Recently, a standardized extract of Asparagus officinalis stem (EAS), produced from the byproduct of asparagus, has been shown to induce HSP70 expression without HS and regulate cellular redox balance in pheochromocytoma cells. However, the effects of EAS on reproductive cell function remain unknown. Here, we investigated the effect of EAS on HSP70 induction and oxidative redox balance in cultured bovine cumulus-granulosa (CG) cells. EAS significantly increased HSP70 expression; however, no effect was observed on HSP27 and HSP90 under non-HS conditions. EAS decreased ROS generation and DNA damage and increased glutathione (GSH) synthesis under both non-HS and HS conditions. Moreover, EAS synergistically increased HSP70 and HSF1 expression and increased progesterone levels in CG cells. Treatment with an HSP70 inhibitor significantly decreased GSH level, increased ROS level, and decreased HSF1, Nrf2, and Keap1 expression in the presence of EAS. Furthermore, EAS significantly increased progesterone synthesis. Thus, EAS improves HSP70-mediated redox balance and cell function in bovine CG cells.


Asunto(s)
Asparagus/química , Células del Cúmulo/citología , Células del Cúmulo/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Extractos Vegetales/farmacología , Animales , Bovinos , Daño del ADN , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/genética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Tallos de la Planta/química , Progesterona/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Estándares de Referencia
20.
Biochem Biophys Res Commun ; 577: 116-123, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34509723

RESUMEN

The zona pellucida (ZP) plays an important role in both the fertilization and embryonic development. For the successful handling of early stage blastomeres for differentiation analysis, the production of identical twins or quadruplets, nuclear transfer or gene introduction requires the removal of the ZP (ZPR). Although single use of either acidic Tyrode's solution or pronase are commonly used for ZPR, long-term exposure to these agents can result in the inhibition of development with the collapse of the three-dimensional blastomere structure. Here, we demonstrate the benefits of using a two-step combined ZPR method, which relies upon a customized well-of-well (cWOW) system with smaller well size, on developmental competence and the quality of the zona free (ZF) mouse embryos. We first isolated 2-cell embryos using acid Tyrode's solution and then cultured these embryos using either commercially available or cWOW, which had a smaller microwell size. The rate of blastocyst was significantly increased by use of cWOW when compared to other culture systems. Then we evaluated the use of a two-step ZPR protocol, relying on acid Tyrode's solution and proteinase K, and subsequent culture in the cWOW system. Although acid Tyrode's solution treatment alone reduced ZPR time, blastomere morphology became wrinkled, significant decrease in blastocyst rate associated with increased number of apoptotic cells and increased expression of apoptosis-related genes were observed. Using proteinase K alone increased ZPR time and significantly decreased the blastocyst rate, but did not induce an increase in apoptotic cell number or apoptosis-related gene expression. In contrast, two-step method significantly reduced ZPR time and improved blastocyst rate by increasing the total number of cells in these wells an reducing the number of apoptotic cells in these experiments. These results suggest that the two-step ZPR protocol is beneficial for reducing the toxic effects of zona removal on ZF embryo development and quality when combined with a suitable culture system.


Asunto(s)
Blastocisto/fisiología , Blastómeros/fisiología , Técnicas de Cultivo de Embriones/métodos , Desarrollo Embrionario/fisiología , Zona Pelúcida/fisiología , Animales , Apoptosis/genética , Blastocisto/citología , Blastómeros/citología , Fragmentación del ADN , Endopeptidasa K/metabolismo , Femenino , Etiquetado Corte-Fin in Situ/métodos , Soluciones Isotónicas/química , Masculino , Ratones Endogámicos ICR , Microscopía Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...