Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
1.
Ecol Evol ; 14(9): e70271, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39310731

RESUMEN

Climbing plants are important components of tropical and many temperate forest ecosystems. Current studies regard climbing plants as a single ecological plant type and ignore the ecological differences resulting from their climbing mechanisms, which may lead to a misrepresentation of the role of climbing plants in forest dynamics. Based on behavioral traits and economic traits of climbing plants, we test the hypothesis that tendril climbers and stem twiners are characterized by different resource acquisition strategies. We quantified and compared 4 behavioral traits and 7 economic traits of four stem twining vines and four tendril vines in a temperate oak forest and further tested their differences in resource acquisition strategy. Our study found that tendril vines were scattered in a group distinct from stem twining vines along the first axes of the principal component analysis using four behavioral traits and seven economic traits, being located at the more acquisitive end with more hosts, a larger distance to length ratio of stem, higher leaf and root nitrogen concentrations, and lower leaf carbon content, while stem twining vines showed the opposite trends. These results indicate that tendril vines have a more acquisitive strategy than stem twining vines. The findings suggest a functional variability among the different climbing mechanisms, and which should be accounted for in future studies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39288172

RESUMEN

Quinones with a rapid reduction-oxidation rate are promising high-capacity cathodes for lithium-ion batteries. However, the high solubility of quinone molecules in polar organic electrolytes results in low cycle stability, while their low electric conductivity causes low utilization of electrode materials. In this article, a new p-benzoquinone derivative, poly(vinyl benzoquinone) (PVBQ), is designed and synthesized, and a solution-based method of preparing free-standing PVBQ/reduced graphene oxide (RGO) composite films is developed. PVBQ has a high theoretical specific capacity (400 mA h g-1) because of its low dead moiety mass. In the produced composite films, PVBQ nanoparticles are uniformly dispersed on RGO sheets, which endows the composite films with high electric conductivity and inhibits the dissolution of PVBQ through strong adsorption. As a result, the composite films show a high active material utilization, high practical specific capacity, and excellent cycling stability. PVBQ in the composite membrane containing 60.2 wt % RGO deliver 244 mA h g-1 capacity after 200 charge-discharge cycles at a current density of 300 mA g-1. At a current density of 1500 mA g-1, the reversible specific capacity is still 170 mA h g-1. This work provides a high-performance cathode material for lithium-ion batteries, and the molecular structure and electrode structure design ideas are also instructive for developing other organic electrode materials.

3.
ACS Nano ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288273

RESUMEN

Magnetic tunneling junctions (MTJs) lie in the core of magnetic random access memory, holding promise in integrating memory and computing to reduce hardware complexity, transition latency, and power consumption. However, traditional MTJs are insensitive to light, limiting their functionality in in-memory sensing─a crucial component for machine vision systems in artificial intelligence applications. Herein, the convergence of magnetic memory with optical sensing capabilities is achieved in the all-two-dimensional (2D) magnetic junction Fe3GaTe2/WSe2/Fe3GaTe2, which combines 2D magnetism and optoelectronic properties. The clean intrinsic band gap and prominent photoresponse of interlayer WSe2 endow the tunneling barrier with optical tunability. The on-off states of junctions and the magnetoresistance can be flexibly controlled by the intensity of the optical signal at room temperature. Based on the optical-tunable magnetoresistance in all-2D magnetic junctions, a machine vision system with the architecture of in-memory sensing and computing is constructed, which possesses high performance in image recognition. Our work exhibits the advantages of 2D magneto-electronic devices and extends the application scenarios of magnetic memory devices in artificial intelligence.

4.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167498, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243827

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is an immunosuppressive hematologic malignancy with a poor prognosis. An immunosuppressive microenvironment blunts AML therapy. However, the prognostic and therapeutic roles of the factors that mediate immunosuppression in AML remain elusive. METHODS: S100 calcium-binding protein A4 (S100A4) was identified as an immunosuppression-mediating factor by analyzing The Cancer Genome Atlas AML project (TCGA-LAML) transcriptome data and data from AML-bearing mice and AML patients. The S100A4-mediated signaling pathway in myeloid-derived suppressor cells (MDSCs) was evaluated. RESULTS: Elevated S100A4 expression was positively associated with worse survival of AML patients, MDSCs, macrophages and immune checkpoints. S100A4 silencing downregulated the expression levels of MDSC-associated CD14, CCR2 and CCL2, reduced MDSC expansion and impaired MDSC-mediated inhibition of T cell activation and proliferation. S100A4-based prognostic signature (SPS) was an independent risk factor for AML patients. The high-risk group based on SPS was not only associated with adverse survival, MDSCs and macrophages and immune checkpoints but also insensitive to 25 chemotherapy drugs. It was also found that CCAAT enhancer binding protein beta (CEBPB) mediated S100A4 transcription. CEBPB silencing downregulated the expression levels of MDSC-associated CD14, CCR2 and CCL2. Mechanistically, S100A4 activated GP130/JAK2/STAT3 signaling in MDSCs by interacting with the cytokine-binding domain of GP130. Moreover, S100A4 mediated MDSC expansion through JAK2/STAT3 signaling. CONCLUSION: This study uncovers the critical role of S100A4 in MDSC accumulation, and S100A4-based prognostic signature may guide chemotherapy sensitivity in patients with AML.

5.
iScience ; 27(8): 110588, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39220410

RESUMEN

Although autosomal-dominant inheritance is believed an important cause of familial clustering Alzheimer's disease (FAD), it covers only a small proportion of FAD incidence, and so we investigated epigenetic memory as an alternative mechanism to contribute for intergenerational AD pathogenesis. Our data in vivo showed that mys-2 of Caenorhabditis elegans that encodes a putative MYST acetyltransferase responsible for H4K16 acetylation modulated AD occurrence. The phenotypic improvements in the parent generation caused by mys-2 disfunction were passed to their progeny due to epigenetic memory, which resulted in similar H4K16ac levels among the candidate target genes of MYS-2 and similar gene expression patterns of the AD-related pathways. Furthermore, the ROS/CDK-5/ATM pathway functioned as an upstream activator of MYS-2. Our study indicated that MYS-2/MOF could be inherited intergenerationally via epigenetic mechanisms in C. elegans and mammalian cell of AD model, providing a new insight into our understanding of the etiology and inheritance of FAD.

6.
J Pineal Res ; 76(5): e13003, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143673

RESUMEN

RNA N6-methyladenosine (m6A) readers mediate cancer progression. However, the functional role and potential mechanisms of the m6A readers in prostate cancer tumorigenicity remain to be elucidated. In this study, we demonstrate that YTHDF3 expression is elevated in castration-resistant prostate cancer (CRPC) and positively correlated to high grade, bone metastasis and poor survival. YTHDF3 expression promoted CRPC cell proliferation, epithelial to mesenchymal transition (EMT) and tumour progression. Mechanistically, YTHDF3 promoted the RNA degradation of SPOP and NXK3.1 but stabilized RNA expressions of TWIST1 and SNAI2 dependent on m6A to facilitate cell proliferation and EMT. Additionally, YTHDF3 expression enhanced AKT activity via degrading SPOP in an m6A-dependent manner. Importantly, we found that melatonin can compete with m6A to occupy the m6A-binding cage of YTHDF3, leading to inhibition of YTHFD3 and its target expressions as well as CRPC tumour growth. Our findings uncover an essential role of YTHDF3 in the progression of CRPC and highlight the role of melatonin in anti-CRPC activity.


Asunto(s)
Progresión de la Enfermedad , Neoplasias de la Próstata Resistentes a la Castración , Proteínas de Unión al ARN , Masculino , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Línea Celular Tumoral , Adenosina/análogos & derivados , Adenosina/metabolismo , Proliferación Celular/genética , Ratones , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Melatonina/metabolismo , Ratones Desnudos
7.
Front Pharmacol ; 15: 1415224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175546

RESUMEN

Aims: Multiple myeloma (MM) remains a challenging condition to cure, with persistent drug resistance negating the benefits of treatment advancements. The unraveling complexities in programmed cell death (PCD), inclusive of apoptosis, autophagy, and ferroptosis, have highlighted novel therapeutic avenues. Our study focuses on deciphering how adapalene (ADA), a small molecule compound, accelerates the demise of MM cells via targeting their compensatory survival mechanisms. Methods: To assess the impact of ADA on MM, we employed flow cytometry and trypan blue exclusion assays to determine cell viabilities across MM cell lines and primary patient samples post-treatment. To delineate ADA's therapeutic targets and mechanisms, we conducted RNA sequencing (RNA-seq), gene set enrichment analysis (GSEA), molecular docking, and molecular dynamics simulations. We further designed pre-clinical trials emphasizing MM, exploring the efficacy of ADA as a standalone and in combination with bortezomib (BTZ). Results: ADA elicited a dose-responsive induction of MM cell death. Building upon ADA's anti-MM capabilities as a single agent, we proposed that ADA-BTZ co-treatment might amplify this lethality. Indeed, ADA and BTZ together greatly potentiated MM cell death. ADA proved beneficial in restoring BTZ susceptibility in BTZ-resistant relapsed or refractory MM (RRMM) patient cells. Molecular simulations highlighted ADA's high affinity (-9.17 kcal/mol) for CD138, with MM-GBSA revealing a binding free energy of -27.39 kcal/mol. Detailed interaction analyses indicated hydrogen-bonding of ADA with CD138 at the Asp35 and Gln34 residues. Additionally, ADA emerged as a versatile instigator of both ferroptosis and apoptosis in MM cells. Furthermore, ADA disrupted activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway triggered by BTZ, fostering cell death in BTZ-resistant MM subsets. Conclusion: ADA demonstrates a comprehensive capability to orchestrate MM cell death, exerting pronounced anti-MM activity while disrupting NF-κB-related drug resistance. ADA sensitization of MM cells to BTZ unravels its potential as a novel therapeutic drug for MM management.

8.
Nat Commun ; 15(1): 7227, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174538

RESUMEN

Antiferromagnets are promising for nano-scale oscillator in a wide frequency range from gigahertz up to terahertz. Experimentally realizing antiferromagnetic moment oscillation via spin-orbit torque, however, remains elusive. Here, we demonstrate that the optical spin-orbit torque induced by circularly polarized laser can be used to drive free decaying oscillations with a frequency of 2 THz in metallic antiferromagnetic Mn2Au thin films. Due to the local inversion symmetry breaking of Mn2Au, ultrafast a.c. current is generated via spin-to-charge conversion, which can be detected through free-space terahertz emission. Both antiferromagnetic moments switching experiments and dynamics analyses unravel the antiferromagnetic moments, driven by optical spin-orbit torque, deviate from its equilibrium position, and oscillate back in 5 ps once optical spin-orbit torque is removed. Besides the fundamental significance, our finding opens a new route towards low-dissipation and controllable antiferromagnet-based spin-torque oscillators.

9.
J Sci Food Agric ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087633

RESUMEN

BACKGROUND: Research on the co-production of multiple enzymes by Bacillus velezensis as a novel species is still a topic that needs to be studied. This study aimed to investigate the fermentation characteristics of B. velezensis D6 co-producing α-amylase and protease and to explore their enzymatic properties and applications in fermentation. RESULTS: The maximum co-production of α-amylase and protease reached 13.13 ± 0.72 and 2106.63 ± 64.42 U mL-1, respectively, under the optimal fermented conditions (nutrients: 20.0 g L-1 urea, 20.0 g L-1 glucose, 0.7 g L-1 MnCl2; incubation conditions: initial pH 7.0, temperature 41 °C, 8% inoculation size and 30% working volume). Moreover, the genetic co-expression of α-amylase and protease increased from 0 to 24 h and then decreased after 36 h at the transcriptional level, which coincided with the growth trend of B. velezensis D6. The optimal reaction temperature of α-amylase was 55-60 °C, while that of protease was 35-40 °C. The activities of α-amylase and protease were retained by over 80% after thermal treatment (90 °C, 1 h), which indicated that two enzymes co-produced by B. velezensis D6 demonstrated excellent thermal stability. Moreover, the two enzymes were stable over a wide pH range (pH 4.0-8.0 for α-amylase; pH 4.0-9.0 for protease). Finally, the degrees of hydrolysis of corn, rice, sorghum and soybeans by α-amylase from B. velezensis D6 reached 44.95 ± 2.95%, 57.16 ± 2.75%, 52.53 ± 4.01% and 20.53 ± 2.42%, respectively, suggesting an excellent hydrolysis effect on starchy raw materials. The hydrolysis degrees of mackerel heads and soybeans by protease were 43.93 ± 2.19% and 26.38 ± 1.72%, respectively, which suggested that the protease from B. velezensis D6 preferentially hydrolyzed animal-based protein. CONCLUSION: This is a systematic study on the co-production of α-amylase and protease by B. velezensis D6, which is crucial in widening the understanding of this species co-producing multi-enzymes and in exploring its potential application. © 2024 Society of Chemical Industry.

10.
Heliyon ; 10(16): e35940, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39211916

RESUMEN

Objective: The senescence process is pivotal in both the onset and advancement of lung adenocarcinoma (LUAD), influencing cell growth, immune evasion, the potential for metastasis, and resistance to treatments. Senescent cells' dual nature, both harmful and advantageous, adds complexity to understanding their expression patterns and clinical relevance in LUAD. In this study, we sought to evaluate the predictive value of the senescence-related signature in survival outcomes and immunotherapy efficacy in patients with LUAD. Materials and methods: We integrated data from 1449 LUAD cases sourced from different publicly accessible datasets and a clinical cohort of Chinese LUAD patients. The Cox regression analysis employing the least absolute shrinkage and selection operator (LASSO) was performed on 156 senescence-associated genes to develop the senescence-related signature. Kaplan-Meier analysis and time-dependent receiver operating characteristic curves were utilizaed to assess the prognostic significance of the senescence-related signature. Functional annotation, immune infiltration analysis, and gene set variation analysis were applied to investigate the association of the senescence-related signature with anti-tumor immunity in LUAD. Immunotherapy cohorts of non-small cell lung cancer, urothelial carcinoma, skin cutaneous melanoma, and glioblastoma patients were included to assess the senescence-related signature in predicting immunotherapy efficacy. Results: The senescence-related signature, which encompasses seven senescence-related genes, namely, FOXM1, VDAC1, PPP3CA, MAPK13, PIK3CD, RRAS, and CCND3, was identified to have predictive significance across multiple LUAD cohorts and demonstrated a negative association with antitumor immunity and tumor-infiltrating neutrophils. Patients exhibiting low expression levels of the senescence-related signature responded more favorably to immune checkpoint inhibitors in various solid tumors, including LUAD. Inhibiting FOXM1 pharmacologically with thiostrepton produced tumor-suppressive effects and improved immunotherapy responses in a Lewis lung carcinoma mouse model. Conclusions: The senescence-related signature demonstrates potential in predicting patient prognosis and immunotherapy efficacy in LUAD.

11.
Nat Commun ; 15(1): 6591, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097614

RESUMEN

Simultaneously achieving high mass loading and superior rate capability in electrodes is challenging due to their often mutually constrained nature, especially for pseudocapacitors for high-power density applications. Here, we report a robust porous polyaniline hydrogel (PPH) prepared using a facile ice-templated in situ polymerization approach. Owing to the conductive, robust, and porous nanostructures suitable for ultrafast electron and ion transport, the self-supporting pure polyaniline hydrogel electrode exhibits superior areal capacitance without sacrificing rate capability and gravimetric capacitance at an ultrahigh mass loading and notable current density. It achieves a high areal capacitance (15.2 F·cm-2 at 500 mA·cm-2) and excellent rate capability (~92.7% retention from 20 to 500 mA·cm-2) with an ultrahigh mass loading of 43.2 mg cm-2. Our polyaniline hydrogel highlights the potential of designing porous nanostructures to boost the performance of electrode materials and inspires the development of other ultrafast pseudocapacitive electrodes with ultrahigh loadings and fast charge/discharge capabilities.

12.
Adv Mater ; : e2403624, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129355

RESUMEN

Interplay between magnetism and photoelectric properties introduces the effective control of photoresponse in optoelectronic devices via magnetic field, termed as magneto-photoresponse. It enriches the application scenarios and shows potential to construct in-sensor vision systems for artificial intelligence with gate-free architecture. However, achieving a simultaneous existence of room-temperature magnetism and notable photoelectric properties in semiconductors is a great challenge. Here, the room-temperature magneto-photoresponse is accomplished in all-2D optoelectronic devices, employing 2D ferromagnet Fe3GaTe2 as the source and drain, with WSe2 forming the channel. The interplay between room-temperature magnetism and photoelectric properties is realized by introducing the unique magneto-band structure effect from 2D interface, resulting in magneto-tunable charge transfer between Fe3GaTe2 and WSe2. The photocurrent in this 2D optoelectronic device exhibits robust response to both the direction and amplitude of external magnetic fields. Utilizing constructed 2D optoelectronic devices with magneto-photoresponse, traditional gate-controlled phototransistors are replaced and a prototype in-sensor vision system with visual adaptation, significantly improving the recognition accuracy to over four times in low-contrast environments is established. These findings pave a way for achieving high-temperature magneto-photoresponse, thereby guiding the construction of robust in-sensor vision systems toward high performance and broad applications.

13.
Mediators Inflamm ; 2024: 8237681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974599

RESUMEN

Electroacupuncture (EA) at the Neiguan acupoint (PC6) has shown significant cardioprotective effects. Sympathetic nerves play an important role in maintaining cardiac function after myocardial infarction (MI). Previous studies have found that EA treatment may improve cardiac function by modulating sympathetic remodeling after MI. However, the mechanism in how EA affects sympathetic remodeling and improves cardiac function remains unclear. The aim of this study is to investigate the cardioprotective mechanism of EA after myocardial ischemic injury by improving sympathetic remodeling and promoting macrophage M2 polarization. We established a mouse model of MI by occluding coronary arteries in male C57/BL6 mice. EA treatment was performed at the PC6 with current intensity (1 mA) and frequency (2/15 Hz). Cardiac function was evaluated using echocardiography. Heart rate variability in mice was assessed via standard electrocardiography. Myocardial fibrosis was evaluated by Sirius red staining. Levels of inflammatory factors were assessed using RT-qPCR. Sympathetic nerve remodeling was assessed through ELISA, western blotting, immunohistochemistry, and immunofluorescence staining. Macrophage polarization was evaluated using flow cytometry. Our results indicated that cardiac systolic function improved significantly after EA treatment, with an increase in fractional shortening and ejection fraction. Myocardial fibrosis was significantly mitigated in the EA group. The sympathetic nerve marker tyrosine hydroxylase and the nerve sprouting marker growth-associated Protein 43 were significantly reduced in the EA group, indicating that sympathetic remodeling was significantly reduced. EA treatment also promoted macrophage M2 polarization, reduced levels of inflammatory factors TNF-α, IL-1ß, and IL-6, and decreased macrophage-associated nerve growth factor in myocardial tissue. To sum up, our results suggest that EA at PC6 attenuates sympathetic remodeling after MI to promote macrophage M2 polarization and improve cardiac function.


Asunto(s)
Electroacupuntura , Macrófagos , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Masculino , Infarto del Miocardio/terapia , Ratones , Macrófagos/metabolismo , Sistema Nervioso Simpático , Ecocardiografía , Corazón/fisiopatología , Miocardio/metabolismo , Miocardio/patología
14.
PeerJ ; 12: e17444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952985

RESUMEN

Background: Cervical cancer remains a prevalent cancer among women, and reliance on surgical and radio-chemical therapies can irreversibly affect patients' life span and quality of life. Thus, early diagnosis and further exploration into the pathogenesis of cervical cancer are crucial. Mass spectrometry technology is widely applied in clinical practice and can be used to further investigate the protein alterations during the onset of cervical cancer. Methods: Employing labeled-free quantitative proteomics technology and bioinformatics tools, we analyzed and compared the differential protein expression profiles between normal cervical squamous cell tissues and cervical squamous cell cancer tissues. GEPIA is an online website for analyzing the RNA sequencing expression data of tumor and normal tissue data from the TCGA and the GTEx databases. This approach aided in identifying qualitative and quantitative changes in key proteins related to the progression of cervical cancer. Results: Compared to normal samples, a total of 562 differentially expressed proteins were identified in cervical cancer samples, including 340 up-regulated and 222 down-regulated proteins. Gene ontology functional annotation, and KEGG pathway, and enrichment analysis revealed that the differentially expressed proteins mainly participated in metabolic pathways, spliceosomes, regulation of the actin cytoskeleton, and focal adhesion signaling pathways. Specifically, desmoplakin (DSP), protein phosphatase 1, regulatory (inhibitor) subunit 13 like (PPP1R13L) and ANXA8 may be involved in cervical tumorigenesis by inhibiting apoptotic signal transmission. Moreover, we used GEPIA database to validate the expression of DSP, PPP1R13L and ANXA8 in human cancers and normal cervix. Conclusion: In this study, we identified 562 differentially expressed proteins, and there were three proteins expressed higher in the cervical cancer tissues. The functions and signaling pathways of these differentially expressed proteins lay a theoretical foundation for elucidating the molecular mechanisms of cervical cancer.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Proteómica , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Proteómica/métodos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos
15.
Sci Rep ; 14(1): 16277, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009702

RESUMEN

Based on the perceptions of college student participants in winter and summer, the effects of different vegetation structures within landscapes (single-layer woodland, tree-shrub-grass composite woodlands, tree-grass composite woodland, and single-layer grassland) and concrete squares without plants were investigated, and the skin conductivity level (SCL) and environmental perception recovery score (PRS) associated with landscape types were calculated. The results indicated that seasonal differences in landscape perception significantly affected college student participants' PRS but not their SCL scores, both in winter and summer. Viewing single-layer and tree-shrub-grass composite woodlands in summer, as well as single-layer woodland in winter, enhanced the environmental perception of the college student participants. The restorative effects of the four vegetation types in green spaces were ranked as follows: single-layer woodland, tree-shrub-grass composite woodlands, single-layer grassland, and tree-grass composite woodlands and concrete squares without plants. These findings underscore the importance of considering seasonal variations when choosing plant species for landscaping purposes, with evergreen single-layer woodland being a suitable choice for winter urban landscapes. This provides a scientific basis for assessing landscape perception and preferences in the future.


Asunto(s)
Salud Mental , Estaciones del Año , Estudiantes , Estudiantes/psicología , Humanos , Femenino , Adulto Joven , Masculino , Universidades , Parques Recreativos , Adulto , Bosques , Árboles
16.
Front Plant Sci ; 15: 1358924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831907

RESUMEN

Introduction: Touch by neighboring plants is a common but overlooked environmental variable for plants, especially in dense vegetation. In addition, shade is inevitable for understory plants. The growth performance of clonal plant to the interaction between thigmomorphogenesis and shade response, and their impact on light adaptability is still unknown. Methods: At the present study, parental ramets of Glechoma longituba were exposed to two conditions (neighboring touch and shade), and their offspring ramets were in ambient or shaded environment. The phenotype and growth of parental and offspring ramets were analyzed. Results: The results showed that neighboring touch of parental ramets regulated the performance of offspring ramets, while the effect depended on the light environment. The parental neighboring touch occurring in ambient environment suppressed the expansion of leaf organ, showed as a shorter petiole and smaller leaf area. Moreover, G. longituba exhibited both shade avoidance and shade tolerance characters to shaded environment, such as increased leaf area ratio and leaf mass ratio, longer specific petiole length and specific stolon length. It was notable that these characters of shade response could be promoted by parental neighboring touch to some extent. Additionally, parental light environment plays an important role in offspring growth, parent with ambient light always had well-grown offspring whatever the light condition of offspring, but the growth of offspring whose parent in shaded environment was inhibited. Finally, for the offspring with shaded environment, the touch between parental ramets in shade environment showed a disadvantage on their growth, but the influence of the touch between parental ramets in ambient environment was slight. Discussion: Overall, the interaction of parental neighboring touch and shade environment complicate the growth of understory plants, the performance of plants is the integrated effect of both. These findings are conducive to an in-depth understanding of the environmental adaptation of plants.

17.
Nat Commun ; 15(1): 4806, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839743

RESUMEN

3D printing of liquid metal remains a big challenge due to its low viscosity and large surface tension. In this study, we use Carbopol hydrogel and liquid gallium-indium alloy to prepare a liquid metal high internal phase emulsion gel ink, which can be used for direct-ink-writing 3D printing. The high volume fraction (up to 82.5%) of the liquid metal dispersed phase gives the ink excellent elastic properties, while the Carbopol hydrogel, as the continuous phase, provides lubrication for the liquid metal droplets, ensuring smooth flow of the ink during shear extrusion. These enable high-resolution and shape-stable 3D printing of three-dimensional structures. Moreover, the liquid metal droplets exhibit an electrocapillary phenomenon in the Carbopol hydrogel, which allows for demulsification by an electric field and enables electrical connectivity between droplets. We have also achieved the printing of ink on flexible, non-planar structures, and demonstrated the potential for alternating printing with various materials.

18.
Environ Pollut ; 357: 124443, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936791

RESUMEN

Trees act as natural filters that mitigate roadside air pollution. However, the filtration impact of different tree arrangements on traffic pollutants with different particle diameters has rarely been analysed in real street canyon environments. To quantify how roadside tree arrangements impact pedestrian exposure to particle number concentrations (PNCs) of different diameters (0.25-32 µm), in situ field measurements were carried out in a boulevard-type street canyon in the city of Xi'an, China. This study analysed the experimental data of PNCs collected along segments of a pedestrian lane under four typical tree arrangements: open space without trees, a sparse-spaced tree arrangement, a medium-spaced tree arrangement, and a dense-spaced tree arrangement in a street canyon. Our results reveal that the effect of tree arrangement on PNCs depended on the particle diameter. In general, trees can significantly reduce coarse PNC (particles with diameters >2.5 µm) but not the fine PNC. Quantitative analysis showed that a medium-spaced tree arrangement, in which tree crowns are adjacent to each other but do not overlap, is the most capable of reducing PNC, followed by a sparse-spaced tree arrangement, while a the dense-spaced tree arrangement has the least impact. The attenuation effect of trees on the PNCs increased with increasing particle diameter. Moreover, the presence of trees altered the local microclimate, which also affected how exposure to PNCs changed. Our empirical findings further highlight the complexity of how trees affect particulate pollutants in street canyons and provide timely insights for enhancing tree-planning management in cities from the perspective of air quality improvement.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Tamaño de la Partícula , Material Particulado , Peatones , Árboles , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , China , Humanos , Monitoreo del Ambiente , Contaminación del Aire/estadística & datos numéricos , Emisiones de Vehículos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos
19.
Cell Signal ; 120: 111216, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729325

RESUMEN

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer worldwide. Structural maintenance of chromosomes 2 (SMC2) serves as a predictor of poor prognosis across various cancer types. This study aims to explore the role and underlying mechanisms of SMC2 in LUAD progression. The expression of SMC2 in LUAD tissues and its correlation with prognosis were analyzed by public databases. Knockdown of SMC2 was performed to assess the proliferation, migration and invasion ability of LUAD cells. Bulk RNA sequencing analysis identified enriched cellular pathways and remarkable upregulation of BTG anti-proliferation factor 2 (BTG2) expression after SMC2 knockdown in LUAD cells. Then, BTG2 was silenced to assess the malignant behavior of LUAD cells. Subcutaneous transplantation and intracranial tumor models of LUAD cells in BALB/c nude mice were established to assess the antineoplastic effect of SMC2 knockdown in vivo. Additionally, a lung metastasis model was created to evaluate the pro-metastatic effect of SMC2. Our findings indicated that SMC2 was upregulated in LUAD tissues and cell lines, with higher expression correlating with poor prognosis. SMC2 silencing suppressed the proliferation, migration and invasion ability of LUAD cells by upregulating BTG2 expression via p53 and inactivating ERK and AKT pathways. BTG2 silencing reversed the effects of SMC2 downregulation on malignant behaviors of LUAD cells and restored the phosphorylated ERK and AKT levels. Furthermore, SMC2 knockdown effectively prevented the formation of subcutaneous, intracranial and metastatic tumor in vivo, and upregulation of BTG2 expression after SMC2 knockdown was confirmed in tumor models. This study revealed that SMC2 knockdown restrained the malignant progression of LUAD through upregulation of BTG2 expression and inactivation of ERK and AKT pathways, and SMC2 could be a potential therapeutic target for LUAD treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Inmediatas-Precoces , Neoplasias Pulmonares , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Supresoras de Tumor , Regulación hacia Arriba , Animales , Femenino , Humanos , Ratones , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
20.
Nat Commun ; 15(1): 4270, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769299

RESUMEN

Néel spin-orbit torque allows a charge current pulse to efficiently manipulate the Néel vector in antiferromagnets, which offers a unique opportunity for ultrahigh density information storage with high speed. However, the reciprocal process of Néel spin-orbit torque, the generation of ultrafast charge current in antiferromagnets has not been demonstrated. Here, we show the experimental observation of charge current generation in antiferromagnetic metallic Mn2Au thin films using ultrafast optical excitation. The ultrafast laser pulse excites antiferromagnetic magnons, resulting in instantaneous non-equilibrium spin polarization at the antiferromagnetic spin sublattices with broken spatial symmetry. Then the charge current is generated directly via spin-orbit fields at the two sublattices, which is termed as the reciprocal phenomenon of Néel spin-orbit torque, and the associated THz emission can be detected at room temperature. Besides the fundamental significance on the Onsager reciprocity, the observed magnonic charge current generation in antiferromagnet would advance the development of antiferromagnetic THz emitter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...