Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Balkan Med J ; 41(3): 174-185, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700313

RESUMEN

Background: Psoriasis is a chronic inflammatory skin disease that has no cure. While the specific cause of psoriasis is unknown, interactions between immune cells and inflammatory cytokines are believed to be important in its pathogenesis. Thymic stromal lymphopoietin (TSLP) is a cytokine produced by epithelial cells that profoundly affects dendritic cells (DCs) and is involved in allergy and inflammatory diseases. In some studies, its expression is higher in the skin of psoriasis patients, whereas it is increased in treated psoriasis patients when compared with untreated patients in others. Aims: To investigate the role of TSLP in the pathogenesis of psoriasis. Study Design: In vitro and in vivo study. Methods: To investigate the effect of TSLP on psoriasis in vivo, a mouse psoriasis model and shRNA targeting TSLP to reduce its expression were used. Mouse primary bone marrow dendritic cells (BMDCs) were cultured in vitro and used to investigate the signaling pathways activated by TSLP. Results: We found that reducing TSLP expression in psoriasis skin alleviated disease severity. TSLP activated the Janus kinase (JAK)/SYK pathway in psoriatic skin. In vitro studies with BMDCs demonstrated that TSLP increased DC maturation through the JAK/SYK pathway and activated DCs-secreted cytokines that stimulated CD4+ T cells to develop into T helper 17 (Th17) cells by activating STAT3 signaling. The JAK/SYK pathway inhibitor reduced the effect of TSLP on activating BMDCs and promoting Th17 differentiation by CD4+ T cells. Conclusion: These findings indicated that TSLP exerted its immune-modulating effect in psoriasis through the JAK/SYK pathway.


Asunto(s)
Citocinas , Células Dendríticas , Psoriasis , Células Th17 , Linfopoyetina del Estroma Tímico , Animales , Humanos , Ratones , Citocinas/metabolismo , Citocinas/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Quinasas Janus , Transducción de Señal/efectos de los fármacos , Quinasa Syk , Células Th17/efectos de los fármacos , Células Th17/inmunología
2.
J Oral Pathol Med ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777565

RESUMEN

OBJECTIVE: This Bayesian network meta-analysis was performed to analyze the associations between clinicopathological characteristics and BRAF mutations in ameloblastoma (AM) patients and to evaluate the diagnostic accuracy. MATERIALS AND METHODS: Four electronic databases were searched from 2010 to 2024. The search terms used were specific to BRAF and AM. Observational studies or randomized controlled trials were considered eligible. The incidence of BRAF mutation and corresponding clinicopathological features in AM patients were subjected to Bayesian network analyses and diagnostic accuracy evaluation. RESULTS: A total of 937 AM patients from 20 studies were included. The pooled prevalence of BRAF mutations in AM patients was 72%. According to the Bayesian network analysis, BRAF mutations are more likely to occur in younger (odds ratio [OR], 2.3; credible interval [CrI]: 1.2-4.5), mandible site (OR, 3.6; 95% CrI: 2.7-5.2), and unicystic (OR, 1.6; 95% CrI: 1.1-2.4) AM patients. Similarly, higher diagnostic accuracy was found in the younger, mandible, and unicystic AM groups. CONCLUSIONS: The incidence, risk, and diagnostic accuracy of BRAF mutation in AM were greater in younger patients, those with mandible involvement, and those with unicystic AM than in patients with other clinicopathological features. In addition, there was a strong concordance in the diagnostic accuracy between molecular tests and immunohistochemical analysis.

3.
Adv Healthc Mater ; : e2303824, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303578

RESUMEN

The limitations of protein-based hydrogels, including their insufficient mechanical properties and restricted biological functions, arise from the highly specific functions of proteins as natural building blocks. A potential solution to overcome these shortcomings is the development of protein-protein hydrogels, which integrate structural and functional proteins. In this study, a protein-protein hydrogel formed by crosslinking bovine serum albumin (BSA) and a genetically engineered intrinsically disordered collagen-like protein (CLP) through Ag─S bonding is introduced. The approach involves thiolating lysine residues of BSA and crosslinking CLP with Ag+ ions, utilizing thiolation of BSA and the free-cysteines of CLP. The resulting protein-protein hydrogels exhibit exceptional properties, including notable plasticity, inherent self-healing capabilities, and gel-sol transition in response to redox conditions. In comparison to standalone BSA hydrogels, these protein-protein hydrogels demonstrate enhanced cellular viability, and improved cellular migration. In vivo experiments provide conclusive evidence of accelerated wound healing, observed not only in murine models with streptozotocin (Step)-induced diabetes but also in zebrafish models subjected to UV-burn injuries. Detailed mechanistic insights, combined with assessments of proinflammatory cytokines and the expression of epidermal differentiation-related proteins, robustly validate the protein-protein hydrogel's effectiveness in promoting wound repair.

4.
Endocrine ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393508

RESUMEN

PURPOSE: The purpose of this study was to analyze the relationship between thyroid autoimmunity and bone mineral density (BMD) in patients with type 2 diabetes mellitus (T2DM), and to further explore the influence of thyroid autoimmunity on diabetic osteoporosis. METHODS: A total of 601 T2DM patients were included and divided into two groups according to thyroid autoantibodies, namely thyroid autoimmunity positive group (TPOAb+ or TGAb + ) and thyroid autoimmunity negative group (TPOAb- and TGAb-). Clinical data were collected and BMD was determined by dual-energy X-ray absorptiometry (DXA). SPSS26.0 software was used to data analysis. Model regression was used to analyze the influencing factors of BMD, and ROC curve was used to analyze the optimal cut-off point of thyroid peroxidase antibody (TPOAb) for screening osteoporosis. RESULTS: TPOAb and thyroglobulin antibody (TGAb) were negatively correlated with BMD and T-score (LS, FN and WB) (P < 0.01), and TGAb was negatively correlated with 25(OH)D (P < 0.05). Multiple linear regression analysis showed that TPOAb was an independent influence factor on LS, FN and WB BMD. ROC curve analysis showed that the optimal threshold of TPOAb for predicting osteoporosis was 12.35. CONCLUSIONS: In T2DM patients, TPOAb and TGAb levels are negatively correlated with LS, FN and WB BMD, and TPOAb is an independent influencing factor for diabetic osteoporosis, and TPOAb has a certain predictive value for the occurrence and development of diabetic osteoporosis clinically.

5.
Chemistry ; 30(6): e202302982, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38031382

RESUMEN

Poly (triazine imide) (PTI) generally obtained via ionothermal synthesis features extended π-conjugation and enhanced crystallinity. However, in-depth investigation of the polycondensation process for PTI is an onerous task due to multiple influencing factors and limited characterization techniques. Herein, to simplify the polymerization route and exclude non-essential factors, PTI was prepared by calcining only melamine and LiCl. This study aims to identify the pivotal role of LiCl in PTI formation, which can convert heptazine-based intermediates into more stable triazine-based PTI framework. Based on this discovery, we demonstrate the transformation process of the prepared samples from amorphous Bulk g-C3 N4 to regular PTI, and further prove that the reaction with LiCl causes disruption of heptazine covalent organic frameworks. Additionally, the PTI exhibits higher photocatalytic water splitting performance due to efficient charge carrier mobility and separation, as well as faster reaction kinetics. This discovery deepens understanding of the polycondensation process of PTI crystals and provides insights toward the rational design of crystalline carbon nitride-based semiconductors.

6.
Ticks Tick Borne Dis ; 15(2): 102293, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38086248

RESUMEN

Ticks are primary vectors for many tick-borne pathogens (TBPs) and pose a serious threat to veterinary and public health. Information on the presence of TBPs in Chinese Milu deer (Elaphurus davidianus) is limited. In this study, a total of 102 Chinese Milu deer blood samples were examined for Anaplasma spp., Theileria spp., Babesia spp., Rickettsia spp., and Borrelia spp., and three TBPs were identified: Anaplasma phagocytophilum (48; 47.1 %), Candidatus Anaplasma boleense (47; 46.1%), and Theileria capreoli (8; 7.8 %). Genetic and phylogenetic analysis of the 16S rRNA and 18S rRNA confirmed their identity with corresponding TBPs. To our knowledge, this is the first report on Candidatus A. boleense and T. capreoli detection in Chinese Milu deer. A high prevalence of A. phagocytophilum with veterinary and medical significance was identified in endangered Chinese Milu deer, which could act as potential zoonotic reservoirs. The identification of the TBPs in Chinese Milu deer provides useful information for the prevention and control of tick-borne diseases.


Asunto(s)
Ciervos , Rickettsia , Theileria , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Garrapatas/microbiología , Ciervos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Rickettsia/genética , Anaplasma/genética , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/microbiología , Theileria/genética , China/epidemiología
7.
Environ Res ; 242: 117775, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029815

RESUMEN

The development of cost-efficient biochar adsorbent with a simple preparation method is essential to constructing efficient wastewater treatment system. Here, a low-cost waste carton biochar (WCB) prepared by a simple two-step carbonization was applied in efficiently removing Rhodamine B (RhB) in aqueous environment. The maximum ability of WCB for RhB adsorption was 222 mg/g, 6 and 10 times higher than both of rice straw biochar (RSB) and broadbean shell biochar (BSB), respectively. It was mainly ascribed to the mesopore structure (3.0-20.4 nm) of WCB possessing more spatial sites compared to RSB (2.2 nm) and BSB (2.4 nm) for RhB (1.4 nm✕1.1 nm✕0.6 nm) adsorption. Furthermore, external mass transfer (EMT) controlled mass transfer resistance (MTR) of the RhB sorption process by WCB which was fitted with the Langmuir model well. Meanwhile, the adsorption process was dominated by physisorption through van der Waals forces and π-π interactions. A mixture of three dyes in river water was well removed by using WCB. This work provides a straightforward method of preparing mesoporous biochar derived from waste carton with high-adsorption capacity for dye wastewater treatment.


Asunto(s)
Carbón Orgánico , Aguas Residuales , Contaminantes Químicos del Agua , Colorantes/química , Eliminación de Residuos Líquidos/métodos , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
8.
Small Methods ; 8(3): e2300836, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926701

RESUMEN

Nb4 C3 Tx MXene has shown extraordinary promise for various applications owing to its unique physicochemical properties. However, it can only be synthesized by the traditional HF-based etching method, which uses large amounts of hazardous HF and requires a long etching time (> 96 h), thus limiting its practical application. Here, an ultra-efficient and environmental-friendly H2 O-assisted supercritical etching method is proposed for the preparation of Nb4 C3 Tx MXene. Benefiting from the synergetic effect between supercritical CO2 (SPC-CO2 ) and subcritical H2 O (SBC-H2 O), the etching time for Nb4 C3 Tx MXene can be dramatically shortened to 1 h. The as-synthesized Nb4 C3 Tx MXene possesses uniform accordion-like morphology and large interlayer spacing. When used as anode for Li-ion battery, the Nb4 C3 Tx MXene delivers a high reversible specific capacity of 430 mAh g-1 at 0.1 A g-1 , which is among the highest values achieved in pure-MXene-based anodes. The superior lithium storage performance of the Nb4 C3 Tx MXene can be ascribed to its high conductivity, fast Li+ diffusion kinetics and good structural stability.

9.
FEMS Microbiol Lett ; 3712024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100390

RESUMEN

In recent years, more and more evidence has shown that the disorder of gut microbiota (GM) is closely correlated with myocardial ischemia (MI). Even though the Danshen and Honghua herb pair (DHHP) is widely used in treating cardiovascular disease in China and exhibits obvious clinical efficacy on MI, the anti-MI mechanism of DHHP remains and needs to be explored in depth. Thus, in this study, we investigated whether the amelioration effect and molecular mechanism of DHHP on MI were related to regulating GM through pharmacodynamics evaluation and metagenomic sequencing. Histopathological testing results showed that DHHP treatment could alleviate the pathological changes of myocardial tissue in the acute MI (AMI) rats induced by isoproterenol (ISO), especially structural disorder, irregular distribution, and enlargement of the myocardial space. These pathological changes were all alleviated to some extent by DHHP treatment. Biochemical analysis results suggested that compared with the control group, the serum levels of AST, CTn-I, CK-MB, and TNF-α in model group rats were notably decreased, and the CAT and SOD levels in serum were markedly increased. These abnormal trends were significantly reversed by DHHP treatment. Furthermore, metagenomic sequencing analysis results indicated that DHHP could improve disorders in the composition and function of GM in AMI rats, mainly reflected in increasing diversity and richness, and obviously enhancing the abundance of Bacteroides fluxus, B. uniformis, B. stercoris, Roseburia hominis, Schaedlerella arabinosiphila, and R. intestinalis, and reducing the abundance of Enterococcus avium and E. canintestini, which were associated with purine metabolism, tyrosine metabolism, cyanoamino acid metabolism, and glutathione metabolism. In conclusion, DHHP may attenuate ISO-induced MI by regulating the structure, composition, and function of GM, thus contributing to further our understanding of the anti-MI mechanisms of DHHP and providing new therapeutic ideas and diagnostic targets for the clinical studies of MI.


Asunto(s)
Carthamus tinctorius , Microbioma Gastrointestinal , Isquemia Miocárdica , Salvia miltiorrhiza , Ratas , Animales , Salvia miltiorrhiza/química , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Isoproterenol/uso terapéutico
10.
Sci Rep ; 13(1): 20161, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978251

RESUMEN

This study aimed to analyze the independent risk factors for predicting preeclampsia severity and explore its underlying mechanism. Clinical data of patients with preeclampsia were collected from the Medical Information Mart for Intensive Care (MIMIC)-IV database. Univariate and multivariate analyses were employed to assess the significant factors associated with preeclampsia severity. Additionally, we performed multivariate logistic regression analysis and mediation analysis to investigate the potential regulatory path. Based on inclusion and exclusion criteria, 731 participants were enrolled: severe preeclampsia (n = 381) and mild to moderate preeclampsia (n = 350). Age, white blood cells (WBC), platelet, creatinine, albumin, uric acid, aspartate aminotransferase, alanine aminotransferase, international normalized ratio, and prothrombin time were significantly related to preeclampsia severity. Besides, hospital length of stay was significantly higher in the severe group. Notably, age and uric acid were independent predictors for preeclampsia severity. Further, WBC and creatinine were significantly associated with uric acid. Finally, the mediation analysis showed that uric acid was a mediator of the relationship between WBC and preeclampsia severity. In conclusion, WBC might affect preeclampsia severity and progression via the mediation of uric acid. This study might provide novel insight into preventing preeclampsia development.


Asunto(s)
Preeclampsia , Embarazo , Femenino , Humanos , Ácido Úrico , Estudios Retrospectivos , Creatinina , Leucocitos
11.
Org Biomol Chem ; 21(45): 8984-8988, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37937487

RESUMEN

A metal-free and efficient approach for the synthesis of structurally important nicotinates through 4-HO-TEMPO-mediated [3 + 3] annulation of cyclopropanols with ß-enamine esters is presented. This protocol features high atom efficiency, green waste, simple operation and broad substrate scope. Moreover, the experiments of gram-scale synthesis and recovery of oxidants make this strategy more sustainable and practical.

12.
Nanomicro Lett ; 15(1): 231, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851182

RESUMEN

2D MXene (Ti3CNTx) has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity, ultra-high capacitance, and excellent flexibility. However, it suffers from a severe restacking problem during the electrode fabrication process, limiting the ion transport kinetics and the accessibility of ions in the electrodes, especially in the direction normal to the electrode surface. Herein, we report a NH3-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots (p-MC) films for high-performance flexible supercapacitor. The pre-intercalated carbon dots (CDs) first prevent the restacking of MXene to expose more inner electrochemical active sites. The partially decomposed CDs generate NH3 for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films. Benefiting from the structural merits and the 3D-interconnected ionic transmission channels, p-MC film electrodes achieve excellent gravimetric capacitance (688.9 F g-1 at 2 A g-1) and superior rate capability. Moreover, the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability, demonstrating the great promise of p-MC electrode for practical applications.

13.
J Dent Sci ; 18(4): 1486-1492, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799904

RESUMEN

Background/purpose: Cancer is an important part of the global burden of childhood diseases. Head and neck carcinoma in children is rare and related research is limited. This study aimed to investigate the clinicopathological features of childhood head and neck carcinoma. Materials and methods: Forty-two cases of childhood head and neck carcinoma treated in our institution were reviewed and analyzed. Results: Median age overall was 11 years. Twenty-three patients (54.8%) were male and 19 (45.2%) were female. Parotid gland location was most common (54.8%). Mucoepidermoid carcinoma and squamous cell carcinoma were the most common histological types (57.1% and 11.9%, respectively). Two patients had a history of bone marrow transplantation and two had a history of odontogenic keratocyst. The recurrence rate after treatment was 8.6%. Conclusion: Early diagnosis and treatment and close follow-up of childhood head and neck carcinoma are warranted to prevent recurrence and improve clinical outcome.

14.
Chemosphere ; 344: 140348, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37793551

RESUMEN

It has been previously reported that pre-magnetization could enhance the efficacy of zero-valent iron (ZVI) in removing contaminants. However, little is known about the effects and persistence of different magnetization methods on pre-magnetized ZVI (Pre-ZVI) when used in advanced oxidation processes (AOPs). Gaining a comprehensive understanding of the durability of various pre-magnetization methods in enhancing the removal efficiency of different pollutants will significantly impact the widespread utilization of Pre-ZVI in practical engineering. Herein, we investigated the efficiency of dry and wet Pre-ZVI-activated peroxymonosulfate (PMS) in eliminating oxytetracycline (OTC) and evaluated the durability of Pre-ZVI. Additionally, we examined several factors that influence the degradation process's efficiency. Our results found that the reaction constant k values corresponding to the dry Pre-ZVI/PMS system at the pH values of 3, 7, and 9 varied from approximately 0.0384, 0.0331, and 0.0349 (day 1) to roughly 0.0297, 0.0278, and 0.0314 (day 30), respectively. Meanwhile, the wet Pre-ZVI/PMS system exhibited k values ranging from approximately 0.0392, 0.0349, and 0.0374 (day 1) to roughly 0.0380, 0.0291, and 0.0322 (day 30), respectively. Moreover, we proposed four OTC degradation pathways using LC-MS/MS and density functional theory calculations. The toxicity of the degradation products was assessed using the ecological structure activity relationship and the toxicity estimation software tool. Overall, this study provides insights into the application of Pre-ZVI/PMS that can be selectively used to eliminate tetracycline antibiotics from water.


Asunto(s)
Oxitetraciclina , Contaminantes Químicos del Agua , Hierro/química , Cromatografía Liquida , Contaminantes Químicos del Agua/química , Espectrometría de Masas en Tándem
15.
Front Immunol ; 14: 1161476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153570

RESUMEN

Background: Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy that typically affects the quadriceps and finger flexors. Sjögren's syndrome (SS), an autoimmune disorder characterized by lymphocytic infiltration of exocrine glands has been reported to share common genetic and autoimmune pathways with IBM. However, the exact mechanism underlying their commonality remains unclear. In this study, we investigated the common pathological mechanisms involved in both SS and IBM using a bioinformatic approach. Methods: IBM and SS gene expression profiles were obtained from the Gene Expression Omnibus (GEO). SS and IBM coexpression modules were identified using weighted gene coexpression network analysis (WGCNA), and differentially expressed gene (DEG) analysis was applied to identify their shared DEGs. The hidden biological pathways were revealed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, protein-protein interaction (PPI) networks, cluster analyses, and hub shared gene identification were conducted. The expression of hub genes was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). We then analyzed immune cell abundance patterns in SS and IBM using single-sample gene set enrichment analysis (ssGSEA) and investigated their association with hub genes. Finally, NetworkAnalyst was used to construct a common transcription factor (TF)-gene network. Results: Using WGCNA, we found that 172 intersecting genes were closely related to viral infection and antigen processing/presentation. Based on DEG analysis, 29 shared genes were found to be upregulated and enriched in similar biological pathways. By intersecting the top 20 potential hub genes from the WGCNA and DEG sets, three shared hub genes (PSMB9, CD74, and HLA-F) were derived and validated to be active transcripts, which all exhibited diagnostic values for SS and IBM. Furthermore, ssGSEA showed similar infiltration profiles in IBM and SS, and the hub genes were positively correlated with the abundance of immune cells. Ultimately, two TFs (HDGF and WRNIP1) were identified as possible key TFs. Conclusion: Our study identified that IBM shares common immunologic and transcriptional pathways with SS, such as viral infection and antigen processing/presentation. Furthermore, both IBM and SS have almost identical immune infiltration microenvironments, indicating similar immune responses may contribute to their association.


Asunto(s)
Enfermedades Autoinmunes , Miositis por Cuerpos de Inclusión , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/genética , Miositis por Cuerpos de Inclusión/genética , Presentación de Antígeno , Biología Computacional
16.
Osteoporos Int ; 34(8): 1465-1476, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37204453

RESUMEN

This study revealed that there was no significant linear relationship between fasting C-peptide (FCP) level and bone mineral density (BMD) or fracture risk in type 2 diabetes mellitus (T2DM) patients. However, in the FCP ≤ 1.14 ng/ml group, FCP is positively correlated with whole body (WB), lumbar spine (LS), and femoral neck (FN) BMD and negatively correlated with fracture risk. PURPOSE: To explore the relationship between C-peptide and BMD and fracture risk in T2DM patients. METHODS: 530 T2DM patients were enrolled and divided into three groups by FCP tertiles, and the clinical data were collected. BMD was measured by dual-energy X-ray absorptiometry (DXA). The 10-year probability of major osteoporotic fractures (MOFs) and hip fractures (HFs) was evaluated by adjusted fracture risk assessment tool (FRAX). RESULTS: In the FCP ≤ 1.14 ng/ml group, FCP level was positively correlated with WB, LS, and FN BMD, while FCP was negatively correlated with fracture risk and osteoporotic fracture history. However, FCP was not correlated with BMD and fracture risk and osteoporotic fracture history in the 1.14 < FCP ≤ 1.73 ng/ml and FCP > 1.73 ng/ml groups. The study has shown that FCP was an independent factor influencing BMD and fracture risk in the FCP ≤ 1.14 ng/ml group. CONCLUSIONS: There is no significant linear relationship between FCP level and BMD or fracture risk in T2DM patients. In the FCP ≤ 1.14 ng/ml group, FCP is positively correlated with WB, LS, and FN BMD and negatively correlated with fracture risk, and FCP is an independent influencing factor of BMD and fracture risk. The findings suggest that FCP may predict the risk of osteoporosis or fracture in some T2DM patients, which has a certain clinical value.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteoporosis , Fracturas Osteoporóticas , Humanos , Densidad Ósea , Fracturas Osteoporóticas/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Péptido C , Osteoporosis/complicaciones , Absorciometría de Fotón , Factores de Riesgo , Medición de Riesgo
17.
J Dig Dis ; 24(3): 181-193, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37210622

RESUMEN

OBJECTIVES: Nonvariceal gastrointestinal bleeding (NVGIB) is a common medical condition with significant mortality and morbidity. Several types of hemostatic modalities are currently available in clinical setting. This systematic review and network meta-analysis aimed to assess the efficacy of these modalities in treating NVGIB. METHODS: PubMed, EMBASE, and the Cochrane Library databases were searched for studies that compared the efficacy of different hemostatic techniques (over-the-scope clip [OTSC], hemostatic powder [HP] and conventional endoscopic treatment [CET]) for NVGIB published up to June 2022. The 30-day rebleeding rate was regarded as the primary outcome. We performed pairwise and network meta-analyses for all treatments. The heterogeneity and transitivity were evaluated. RESULTS: Twenty-two studies were included. Regarding the 30-day rebleeding rate, OTSC and HP plus CET showed superior efficacy in treating NVGIB compared with CET (OTSC vs CET: relative risk [RR] 0.42, 95% confidence interval [CI] 0.28-0.60; HP plus CET vs CET: RR 0.40, 95% CI 0.17-0.87), while OTSC and HP plus CET had comparable efficacy (RR 0.95, 95% CI 0.38-2.31). HP plus CET ranked the highest in the network ranking estimate. The sensitivity analysis showed that it was not robust that OTSC was superior to CET regarding the short-term rebleeding rate and the initial hemostasis rate. While all-cause mortality, bleeding-related mortality and necessity of surgical or angiographic salvage therapy showed no statistically significant difference. CONCLUSION: OTSC and HP plus CET significantly reduced 30-day rebleeding rate compared to CET and had comparable efficacy in the treatment of NVGIB.


Asunto(s)
Hemostasis Endoscópica , Hemostáticos , Humanos , Metaanálisis en Red , Hemorragia Gastrointestinal , Técnicas Hemostáticas , Endoscopía , Hemostáticos/uso terapéutico , Hemostasis Endoscópica/métodos
18.
Comput Struct Biotechnol J ; 21: 2228-2240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035552

RESUMEN

Background: Immune-mediated necrotizing myopathy (IMNM), a subgroup of idiopathic inflammatory myopathies (IIMs), is characterized by severe proximal muscle weakness and prominent necrotic fibers but no infiltration of inflammatory cells. IMNM pathogenesis is unclear. This study investigated key biomarkers and potential pathways for IMNM using high-throughput sequencing and bioinformatics technology. Methods: RNA sequencing was conducted in 18 IMNM patients and 10 controls. A combination of weighted gene coexpression network analysis (WGCNA) and differentially expressed gene (DEG) analysis was conducted to identify IMNM-related DEGs. Feature genes were screened out by employing the protein-protein interaction (PPI) network, support vector machine-recursive feature elimination (SVM-RFE), and least absolute shrinkage selection operator (LASSO). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify their differential expression, and the receiver operating characteristic curve (ROC) was used to evaluate their diagnostic efficiency. Functional enrichment analysis was applied to reveal the hidden functions of feature genes. Furthermore, 28 immune cell abundance patterns in IMNM samples were measured. Results: We identified 193 IMNM-related DEGs that were aberrantly upregulated in the IMNM population and were closely associated with immune-inflammatory responses, regulation of skeletal and cardiac muscle contraction, and lipoprotein metabolism. With the help of the PPI network and the LASSO and SVM-RFE algorithms, three feature genes, LTK, MYBPH, and MYL4, were identified and further confirmed by qRT-PCR. ROC curves among IMNM, dermatomyositis (DM), inclusion body myositis (IBM), and polymyositis (PM) samples validated the LTK and MYL4 genes as IMNM-specific feature markers. In addition, all three genes had a notable association with the autophagy-lysosome pathway and immune-inflammatory responses. Ultimately, IMNM displayed a marked immune-cell infiltrative microenvironment. The most significant correlation was found between CD4 T cells, CD8 T cells, macrophages, natural killer (NK) cells, and dendritic cells (DCs). Conclusions: LTK, MYBPH, and MYL4 were identified as potential key molecules for IMNM and are believed to play a role in the autophagy-lysosome pathway and muscle inflammation.

19.
Talanta ; 259: 124508, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37043878

RESUMEN

Ultrasonic sample introduction combined with flame assisted thermal ionization mass spectrometry (USI-FATI-MS) was developed to monitor the fractions of preparative liquid chromatography. Recently, ultrasound-based sample introduction techniques have achieved great advance in the field of high-throughput analysis. However, it is still a challenge to directly apply these existing techniques to the analysis of macro volume samples (mL level). In this work, ultrasonic sample introduction combined with flame assisted thermal ionization was used for pretreatment-free direct mass spectrometry analysis of micro to macro volume samples (µL-mL level). Utilizing this unique design of ultrasonic sample introduction, liquid sample in the container can be quickly atomized to the gas phase without contact. Then, due to the flame assisted thermal ionization source, desolvation and ionization of the sample droplets will occur immediately. USI-FATI-MS has shown excellent sensitivity, repeatability and great compatibility to solvents and compounds with a wide range of polarity. As a proof of concept, USI-FATI-MS has been applied for rapid monitoring and identification of purified synthetic and natural products in fractions.

20.
ACS Nano ; 17(3): 2431-2439, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36656264

RESUMEN

Antimony (Sb) has been pursued as a promising anode material for sodium-ion batteries (SIBs). However, it suffers from severe volume expansion during the sodiation-desodiation process. Encapsulating Sb into a carbon matrix can effectively buffer the volume change of Sb. However, the sluggish Na+ diffusion kinetics in traditional carbon shells is still a bottleneck for achieving high-rate performance in Sb/C composite materials. Here we design and synthesize a yolk-shell Sb@Void@graphdiyne (GDY) nanobox (Sb@Void@GDY NB) anode for high-rate and long cycle life SIBs. The intrinsic in-plane cavities in GDY shells offer three-dimensional Na+ transporting channels, enabling fast Na+ diffusion through the GDY shells. Electrochemical kinetics analyses show that the Sb@Void@GDY NBs exhibit faster Na+ transport kinetics than traditional Sb@C NBs. In situ transmission electron microscopy analysis reveals that the hollow structure and the void space between Sb and GDY successfully accommodate the volume change of Sb during cycling, and the plastic GDY shell maintains the structural integrity of NBs. Benefiting from the above structural merits, the Sb@Void@GDY NBs exhibit excellent rate capability and extraordinary cycling stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA