Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35011367

RESUMEN

In this work, spherical flower-shaped composite carbonyl iron powder@MnO2 (CIP@MnO2) with CIP as the core and ultrathin MnO2 nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO2 composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO2 composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < -20 dB). The sample filled with 40 wt% has the best comprehensive performance, the minimum reflection loss is -63.87 dB at 6.32 GHz, and the effective absorption bandwidth (RL < -20 dB) reaches 7.28 GHz in the range of 5.92 GHz-9.28 GHz and 11.2 GHz-15.12 GHz, which covers most C and X bands. Such excellent microwave absorption performance of the spherical flower-like CIP@MnO2 composites is attributed to the combined effect of multiple beneficial components and the electromagnetic attenuation ability generated by the special spherical flower-like structure. Furthermore, this spherical flower-like core-shell shape aids in the creation of discontinuous networks, which improve microwave incidence dispersion, polarize more interfacial charges, and allow electromagnetic wave absorption. In theory, this research could lead to a simple and efficient process for producing spherical flower-shaped CIP@MnO2 composites with high absorption, a wide band, and oxidation resistance for a wide range of applications.

2.
Cancer Manag Res ; 12: 12853-12865, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364834

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) play a crucial role in a variety of cancers, including colorectal cancer (CRC). This study aimed to explore the role of hsa_circ_0136666 (circ-PRKDC) in CRC and its potential mechanism. METHODS: The levels of circ-PRKDC, miR-198 and discoidin domain receptor 1 (DDR1) were measured using quantitative real-time polymerase chain reaction or Western blot. Cell viability was detected using cell counting kit-8 (CCK-8) assay. Cell apoptosis and cycle were evaluated via flow cytometry. Cell migration and invasion were examined using transwell assay. CyclinD1 protein level was determined via Western blot. The interaction among circ-PRKDC, miR-198 and DDR1 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. Xenograft assay was performed to analyze tumor growth in vivo. RESULTS: Circ-PRKDC and DDR1 levels were increased, and miR-198 level was decreased in CRC tissues and cells. Circ-PRKDC depletion inhibited proliferation, migration and invasion, and expedited apoptosis and cell cycle arrest in SW480 and HCT116 cells. Silence of circ-PRKDC impeded CRC progression by sponging miR-198. Overexpression of miR-198 hindered CRC development via targeting DDR1. Moreover, circ-PRKDC silencing suppressed tumor growth in vivo. CONCLUSION: Knockdown of circ-PRKDC inhibited CRC progression via modulating miR-198/DDR1 pathway.

3.
BMC Vet Res ; 15(1): 134, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064364

RESUMEN

BACKGROUND: Duck viral hepatitis (DVH) is an acute disease of young ducklings with no effective veterinary drugs for treatment. Gynostemma pentaphyllum is a well-known traditional Chinese medicine that plays an important role in the treatment of various diseases. Gypenoside (GP), one of the main ingredients of Gynostemma pentaphyllum, was reported with good hepatoprotective effects. However, its low solubility limits its application in the clinics. To improve its solubility and bioactivity, a phosphorylated derivative of gypenoside (pGP) was prepared by the sodium trimetaphosphate-sodium tripolyphosphate (STMP-STPP) method. An infrared spectroscopy method was applied to analyse the structures of GP and pGP. Then, a methyl thiazolyl tetrazolium (MTT) colorimetric assay was applied to study the hepatocyte protective efficacy of these two drugs against duck hepatitis A virus type 1 (DHAV-1) infection, and qPCR, TUNEL labelling and flow cytometry methods were used to study the relevant hepatocyte protective in vitro. RESULTS: The infrared spectroscopy detection results showed that the phosphorylation modification of GP was successful. The MTT colorimetric assay results showed that both GP and pGP possessed good hepatocyte protective efficacy in vitro, and pGP performed better than GP when the drug was added before or after virus inoculation. Furthermore, the qPCR results revealed that both drugs could effectively inhibit the adsorption (when adding GP and pGP pre-virus inoculation), replication and release of DHAV-1, and the viral inhibition rate of pGP was greater than that of GP. The subsequent TUNEL labelling and flow cytometry assays showed that both GP and pGP could significantly inhibit duck embryo hepatocyte apoptosis induced by DHAV-1, and the inhibition effect of pGP was much stronger than that of GP. CONCLUSIONS: GP exerts good hepatocyte protective efficacy not only by inhibiting the proliferation of DHAV-1 but also by inhibiting duck embryonic hepatocyte apoptosis induced by DHAV-1, and phosphorylation modification significantly improves the antiviral and the anti-apoptotic effects of GP. Therefore, pGP has the potential to be developed into a novel drug against DHAV-1 infection.


Asunto(s)
Virus de la Hepatitis del Pato/efectos de los fármacos , Animales , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Células Cultivadas , Patos , Gynostemma/química , Hepatitis Viral Animal/tratamiento farmacológico , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Fosforilación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Replicación Viral/efectos de los fármacos
4.
Poult Sci ; 98(1): 373-380, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085207

RESUMEN

Francolins ophthalmia is often caused by resistant conditional pathogenic bacteria. Conditional pathogenic Staphylococcus saprophyticus is a potential reservoir of macrolides antibiotics resistance gene. Baicalin has been reported as a potential agent to synergistically inhibit the replication of Staphylococcus. The objective of this study was to isolate the pathogen of the francolins ophthalmia, identify the antibiotic resistance profile of isolated S. saprophyticus, and investigate the effect of baicalin combined with azithromycin (Azm) against azithromycin resistant S. saprophyticus (ARSS). The ARSS was isolated and identified from francolins suffered from ophthalmia by phenotypic and molecular biology methods. The antibiotic resistance profile was identified by Kirby-Bauer method. Then the minimal inhibitory concentration (MIC) of Azm in absence and presence of a sub-inhibitory concentration baicalin/verapamil was determined to assess the effect that baicalin combined with Azm against ARSS. ARSS was isolated and identified from francolins experienced ophthalmia. The isolated ARSS was resistant to 11 among the 13 antibiotics that were tested. The synergistic effect of baicalin and Azm was noticed with a reduction rate varied from 2 to 128-fold. It appears from this study that S. saprophyticus can cause francolins ophthalmia and baicalin may be used as a natural agent resistance inhibitor for ARSS.


Asunto(s)
Azitromicina/farmacología , Endoftalmitis/veterinaria , Flavonoides/farmacología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Staphylococcus saprophyticus/efectos de los fármacos , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Sinergismo Farmacológico , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/microbiología , Galliformes , Enfermedades de las Aves de Corral/microbiología , Staphylococcus saprophyticus/aislamiento & purificación
5.
Front Microbiol ; 8: 1850, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29018425

RESUMEN

The duck virus hepatitis (DVH) caused by the duck hepatitis virus A (DHAV) has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA) and its phosphorylated derivative (pICA) possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo, and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo, the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2) as an intervention method in vitro. pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs) viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2) and c-Jun N-terminal kinase (JNK), which were related to mitogen-activated protein kinases (MAPKs) signaling pathways. Ultimately, compared to ICA, pICA exhibited more antioxidant activity that could regulate oxidative stress-related indicators, and inhibited the phosphorylation of MAPKs signaling pathway.

6.
Int J Biol Macromol ; 102: 813-821, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28455254

RESUMEN

To explore new effective anti-duck hepatitis A virus drugs, Chrysanthemum indicum polysaccharide (CIPS) was phosphorylation modified using STMP-STPP method, and phosphorylated Chrysanthemum indicum polysaccharide (pCIPS) was obtained. Characteristic absorption peaks were observed in pCIPS using IR spectrum, suggested that CIPS was successfully modified. In addition, field emission scanning electron micro-scope (FE-SEM) was used to observe the polysaccharides' surface features. In vitro, we found that the survival rate of DHAV-infected hepatocytes increased after the two drugs treatment, indicated that the two drugs possess good anti-DHAV activity. The results of real-time PCR showed that pCIPS inhibited the virus gene replication more effectively than CIPS. Reed-Muench assay was used to observe the changes of the virulence, and the expression level of IFN-ß was observed to verify the changes of virulence. In vivo experiment, the blood virus content reduced after CIPS and pCIPS treatment. To evaluate the ducklings' hepatic injury, the serum ALT, AST, TP and ALB levels were detected. Results showed that both CIPS and pCIPS could alleviate the hepatic injury of ducklings infected DHAV, especially for pCIPS. All the results above mentioned demonstrated that the anti-DHAV activity of CIPS was enhanced after phosphorylation modification.


Asunto(s)
Chrysanthemum/química , Virus de la Hepatitis del Pato/efectos de los fármacos , Hígado/efectos de los fármacos , Fosfatos/química , Polisacáridos/química , Polisacáridos/farmacología , Animales , Antivirales/efectos adversos , Antivirales/química , Antivirales/farmacología , Patos , Virus de la Hepatitis del Pato/fisiología , Polisacáridos/efectos adversos , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
7.
PLoS One ; 12(4): e0175495, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28394931

RESUMEN

The principal target organ of duck hepatitis A virus type 1 (DHAV-1) is duckling liver, which is an energy-intensive organ and plays important roles in body's energy metabolism and conversion. As the "power house" of the hepatocytes, mitochondria provide more than 90% of the energy. However, mitochondria are much vulnerable to the oxidative stress for their rich in polyunsaturated fatty acids. Although previous researches have demonstrated that DHAV-1 could induce the oxidative stress in the serum of the infected ducklings, no related study on the mitochondria during the pathological process of DVH has been reported by far. To address this issue, we examined the HE stained tissue pathological slices, detected the hepatic SOD, CAT and GPX activities and MDA contents and analyzed the ATP content, mitochondrial ultrastructure and the mitochondrial SOD, GPX activities and MDA content in the liver tissues. The results showed that the hepatic redox status was significantly disturbed so that causing the mitochondrial dysfunction, ATP depletion and mitochondrial oxidative stress during the process of the DHAV-1 infection, and a prescription formulated with Hypericum japonicum flavone, Radix Rehmanniae Recens polysaccharide and Salvia plebeia flavone (HRS), which had been demonstrated with good anti-oxidative activity in serum, could effectively alleviate the hepatic injury and the oxidative stress in liver tissue induced by DHAV-1 thus alleviating the mitochondrial injury and oxidative stress. In a word, this research discovers the oxidative stress induced mitochondrial dysfunction and oxidative stress during the DVH pathological process and demonstrates HRS exerts good anti-oxidative activity in liver tissue to protect mitochondria against reactive oxygen species (ROS).


Asunto(s)
Antivirales/farmacología , Medicamentos Herbarios Chinos/farmacología , Virus de la Hepatitis del Pato , Hepatitis Viral Animal/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Infecciones por Picornaviridae/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Animales , Patos , Flavonas/farmacología , Glutatión Peroxidasa/metabolismo , Hepatitis Viral Animal/metabolismo , Hepatitis Viral Animal/mortalidad , Hepatitis Viral Animal/patología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Malondialdehído/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/mortalidad , Infecciones por Picornaviridae/patología , Polisacáridos/farmacología , Distribución Aleatoria , Superóxido Dismutasa/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...