Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 363: 127962, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36115509

RESUMEN

In this study, Clostridium sp. strain WK-AN1 carrying both genes of agarase (Aga0283) and neoagarobiose hydrolase (NH2780) were successfully constructed to convert agar polysaccharide directly into butanol, contributing to overcome the lack of algal hydrolases in solventogenic clostridia. Through the optimization by the Plackett-Burman design (PBD) and response surface methodology (RSM), a maximal butanol production of 6.42 g/L was achieved from 17.86 g/L agar. Further application of utilizing the butyric acid pretreated Gelidium amansii hydrolysate demonstrated the modified strain obtained the butanol production of 7.83 g/L by 1.63-fold improvement over the wild-type one. This work for the first time establishes a novel route to utilize red algal polysaccharides for butanol fermentation by constructing a solventogenic clostridia-specific secretory expression system for heterologous agarases, which will provide insights for future development of the sustainable third-generation biomass energy.


Asunto(s)
Butanoles , Rhodophyta , 1-Butanol/metabolismo , Agar/metabolismo , Butanoles/metabolismo , Ácido Butírico/metabolismo , Clostridium/metabolismo , Fermentación , Rhodophyta/metabolismo
2.
Bioresour Technol ; 334: 125222, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33951568

RESUMEN

Solventogenic clostridia has been considered as one of the most potential microbial cell factories for biofuel production in the biorefinery industry. However, the inherent shortcomings of clostridia strains such as low productivity, by-products formation and toxic tolerance still strongly restrict the large-scale application. Therefore, concerns regarding the genetic modification of solventogenic clostridia have spurred interests into the development of modern gene-editing tools. In this review, we summarize the latest advances of genetic tools involved in modifying solventogenic clostridia. Following a systematic comparison on their respective characteristics, we then review the corresponding strategies for overcoming the obstacles to the enhanced production. Discussing the progress of other microbial cell factories for solventogenesis, we finally describe the key challenges and trends with valuable recommendations for future large-scale biosolvent industrial application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...