Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 1): 126653, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37659483

RESUMEN

The applications of alginate derived from seaweed polysaccharide in food packaging are restricted due to their inherent deficient antibacterial, antioxidant and UV barrier properties. In this study, nitrogen-functionalized carbon dots (NCDs) with active functions (0.5-3 %) and layered clay (1 %) with barrier property were introduced to construct alginate based active films via solution casting method. The results showed that the synthesized spherical NCDs had a particle size of 2-3 nm, and the internal structure of NCDs was similar to graphene, with a large number of active groups (-NH2, -OH, etc.) on the surface. Infrared analysis revealed that NCDs could form strong hydrogen bonds with alginate matrix, which slowed down the deterioration of mechanical properties and reduced the surface wettability. With the addition of NCDs, active functions and surface hydrophobicity of the active films were enhanced significantly (P < 0.05). When the amount of NCDs reached 3 %, UV barrier, antioxidant and antibacterial properties of the active films were increased by 50.0 %, 61.1 % and 70.1 %, respectively. The addition of NCDs could enhance the anti-browning ability of alginate based coatings and extend the shelf life of banana significantly. Therefore, a suitable amount of NCDs (1-2 %) and layered clay (1 %) can synergistically improve comprehensive performance of alginate based films and promote their food packaging application used as active films/inner coatings.


Asunto(s)
Alginatos , Carbono , Arcilla , Antioxidantes/farmacología , Embalaje de Alimentos , Antibacterianos/farmacología , Nitrógeno
2.
Anal Chim Acta ; 982: 131-137, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28734352

RESUMEN

It is of great importance to understand biochemical system's behavior toward environmental perturbation during the development of living organisms. Here a microfluidic platform for Drosophila embryo's online development and observation is presented. The system is capable of developing the embryo's anterior and posterior halves controlled at different temperature environments, and it can be easily coupled with a confocal microscope for real-time image acquisition. The microfluidic chip is consisted of a polymethylmethacrylate (PMMA) substrate with a thickness of 4.0 mm and a polydimethylsiloxane (PDMS) cover designed with a typical 'Y' channel with a depth of 400 µm, width of 800 µm. Temperature gradients were created across the anterior half and posterior half of the embryo by utilizing two streams of laminar flow with different temperatures. It was found that thermal gradient would result in asynchronous development of the two halves of the embryos, and the developing difference was related to the direction of thermal gradient. This may result from the presence of an unknown mechanism located in the anterior half of the embryo, which oversees nuclear division synchronicity. These observations would help better understand compensatory mechanisms of Drosophila embryo's development under environmental perturbations.


Asunto(s)
Drosophila/embriología , Microfluídica/métodos , Animales , Microscopía Confocal , Temperatura
3.
Anal Chim Acta ; 828: 70-9, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24845817

RESUMEN

Analysis of droplet contents is a key function involved in droplet-based microfluidic systems. Direct electrochemical detection of droplet contents suffers problems such as relatively poor repeatability, interference of capacitive current and relatively poor detectability. This paper presents a novel hybrid polydimethylsiloxane-glass chip for highly sensitive and reproducible amperometric detection of droplet contents. By wettability-patterning of the channel surface of the hybrid chip, water in oil droplets generated in the upstream part of the central channel can be switched to a two-phase vertical laminar flow (i.e., a continuous oil stream flowing atop a continuous aqueous stream) in the downstream part of the channel. The vertical laminar flow keeps the analyte in the underneath-flowing aqueous stream in direct contact with the sensing electrodes located on the bottom surface of the channel. Therefore, steady-state current signals with high sensitivity (1.2AM(-1)cm(-2) for H2O2), low limit of detection (0.12µM, S/N=2), and good reproducibility (RSD 1.1% at 0.3mM H2O2) were obtained. The methods for patterning of the inner channel surface are presented, and the behaviors of the microchip in flow profile switching and amperometric detection are discussed. The application of the developed microchip to enzyme kinetics study is also demonstrated.

5.
Anal Chim Acta ; 767: 97-103, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23452792

RESUMEN

Profile switching of two-phase flows is often required in microfluidic systems. Manipulation of flow profiles can be realized by control of local surface energy of micro channel through wettability-patterning of channel surface. This article presents a facile approach for wettability-patterning of the micro channels of glass chips. Commercially available octadecyltrichlorosilane (OTS) was used to hydrophobilize the channels via the formation of OTS self-assembly monolayer (SAM), and a UV-source that mainly emits deep UV-light of 254 and 185 nm was employed to degrade the in-channel formed OTS-SAM. The architecture of soda-lime glass/quartz glass hybrid chip was designed to facilitate the deep UV-light effective degrading the OTS-SAM. The established approach, together with the side-by-side laminar-flow patterning technique, was applied to prepare various finely patterned channel networks for different tasks of flow profile switching. The micro device capable of conducting the profile switch from W/O droplets to two separated continuous phases was demonstrated to perform on-chip quick liquid-liquid extraction for the determination of partition coefficients of pharmaceuticals.


Asunto(s)
Compuestos de Calcio/química , Técnicas Analíticas Microfluídicas , Óxidos/química , Preparaciones Farmacéuticas/análisis , Cuarzo , Hidróxido de Sodio/química , 1-Octanol/química , Colorantes/química , Vidrio/química , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula , Soluciones , Propiedades de Superficie , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...