Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891542

RESUMEN

Chitosan takes second place of the most abundant polysaccharides naturally produced by living organisms. Due to its abundance and unique properties, such as its polycationic nature, ability to form strong elastic porous films, and antibacterial potential, it is widely used in the food industry and biomedicine. However, its low solubility in both water and organic solvents makes its application difficult. We have developed an environmentally friendly method for producing water-soluble graft copolymers of chitosan and poly (N-vinylpyrrolidone) with high grafting efficiency and a low yield of by-products. By using AFM, SEM, TGA, DSC, and XRD, it has been demonstrated that the products obtained have changed properties compared to the initial chitosan. They possess a smoother surface and lower thermal stability but are sufficient for practical use. The resulting copolymers have a higher viscosity than the original chitosan, making them a promising thickener and stabilizer for food gels. Moreover, the copolymers exhibit an antibacterial effect, suggesting their potential use as a component in smart food packaging.

2.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003281

RESUMEN

In the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa. Among them, the carrier with a molecular weight of 200 kDa bound the maximum amount of enzyme, binding up to 49% of the total protein compared to 19-32% of the total protein bound to other CMChs. Treatment with pure CMCh led to the destruction of biofilms formed by Streptococcus salivarius, Streptococcus gordonii, Streptococcus mutans, and Candida albicans, while no apparent effect on Staphylococcus aureus was observed. A soluble Ficin was less efficient in the destruction of the biofilms formed by Streptococcus sobrinus and S. gordonii. By contrast, treatment with CMCh200-immobilized Ficin led to a significant reduction of the biofilms of the primary colonizers S. gordonii and S. mutans. In model biofilms obtained by the inoculation of swabs from teeth of healthy volunteers, the destruction of the biofilm by both soluble and immobilized Ficin was observed, although the degree of the destruction varied between artificial plaque samples. Nevertheless, combined treatment of oral Streptococci biofilm by enzyme and chlorhexidine for 3 h led to a significant decrease in the viability of biofilm-embedded cells, compared to solely chlorhexidine application. This suggests that the use of either soluble or immobilized Ficin would allow decreasing the amount and/or concentration of the antiseptics required for oral care or improving the efficiency of oral cavity sanitization.


Asunto(s)
Quitosano , Ficaína , Humanos , Ficaína/farmacología , Clorhexidina/farmacología , Quitosano/farmacología , Streptococcus mutans , Streptococcus gordonii , Biopelículas
3.
ChemMedChem ; 18(24): e202300358, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37872856

RESUMEN

This study was the first to synthesize terpene-containing conjugates of fluoroquinolones, ciprofloxacin and norfloxacin, and to evaluate their antibacterial activity against gram-positive methicillin sensitive (MSSA) and methicillin resistant (MRSA) S. aureus, gram-negative P. aeruginosa as well as antifungal activity against C. albicans. The ability of obtained fluoroquinolones to inhibit S. aureus growth was found to depend upon the presence of a linker separating the bulky terpene and fluoroquinolone fragments, and this activity diminished with increasing its length. The highest activity against MSSA was demonstrated by ciprofloxacin derivatives with campholenic (MIC 1 µg/mL) and 2-(isobornan-2-yl-sulfanyl)acetyl (MIC 0.5 µg/mL) substituents. The compound with the last fragment showed high activity against MRSA (MIC 8 µg/mL). The terpene-functionalized norfloxacin derivatives generally proved to be less active than those containing ciprofloxacin fragment. Camphor-10-sulfonylamide derivative with the ciprofloxacin fragment was the only one of all compounds that showed high antifungal activity against C. albicans (8 µg/mL). The study presents data on docking fluoroquinolones to S. aureus DNA gyrase to explain the reasons for manifestation or disappearance of antibacterial activity. The cytotoxicity of fluoroquinolones that showed any antimicrobial activity was investigated against bovine primary lung cells, and they were found to be not toxic in most cases.


Asunto(s)
Antiinfecciosos , Fluoroquinolonas , Animales , Bovinos , Fluoroquinolonas/farmacología , Norfloxacino/farmacología , Staphylococcus aureus , Antifúngicos/farmacología , Terpenos/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Antiinfecciosos/farmacología , Meticilina/farmacología
4.
Sci Data ; 10(1): 160, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949058

RESUMEN

Differential fluorescent staining is an effective tool widely adopted for the visualization, segmentation and quantification of cells and cellular substructures as a part of standard microscopic imaging protocols. Incompatibility of staining agents with viable cells represents major and often inevitable limitations to its applicability in live experiments, requiring extraction of samples at different stages of experiment increasing laboratory costs. Accordingly, development of computerized image analysis methodology capable of segmentation and quantification of cells and cellular substructures from plain monochromatic images obtained by light microscopy without help of any physical markup techniques is of considerable interest. The enclosed set contains human colon adenocarcinoma Caco-2 cells microscopic images obtained under various imaging conditions with different viable vs non-viable cells fractions. Each field of view is provided in a three-fold representation, including phase-contrast microscopy and two differential fluorescent microscopy images with specific markup of viable and non-viable cells, respectively, produced using two different staining schemes, representing a prominent test bed for the validation of image analysis methods.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Procesamiento de Imagen Asistido por Computador , Humanos , Adenocarcinoma/diagnóstico por imagen , Células CACO-2 , Neoplasias del Colon/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Coloración y Etiquetado
5.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501516

RESUMEN

Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and N-(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively). In addition, all derivatives of chitosan studied in this work form hydrogen bonds with His158 located in the active site of bromelain (except N-(2-hydroxypropyl)-3-trimethylammonium chitosan), apparently explaining a significant decrease in the activity of biocatalysts. The N-(2-hydroxypropyl)-3-trimethylammonium chitosan displays only physical interactions with His158, thus possibly modulating the structure of the bromelain active site and leading to the hyperactivation of the enzyme, up to 208% of the total activity and 158% of the specific activity. The FTIR analysis revealed that interaction between N-(2-hydroxypropyl)-3-trimethylammonium chitosan and bromelain did not significantly change the enzyme structure. Perhaps this is due to the slowing down of aggregation and the autolysis processes during the complex formation of bromelain with a carrier, with a minimal modification of enzyme structure and its active site orientation.

6.
Antibiotics (Basel) ; 11(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36358203

RESUMEN

The widespread presence of multidrug-resistant pathogenic microorganisms challenges the development of novel chemotype antimicrobials, insensitive to microbial tools of resistance. To date, various monoterpenoids have been shown as potential antimicrobials. Among many classes of molecules with antimicrobial activity, terpenes and terpenoids are an attractive basis for the design of antimicrobials because of their low toxicity and availability for various modifications. In this work, we report on the synthesis of sulfenimines from chiral trifluoromethylated and non-fluorinated pinane-type thiols. Final compounds were obtained with yields of up to 81%. Among the 13 sulfenimines obtained, 3 compounds were able to repress the growth of both bacteria (S. aureus, both MSSA and MRSA; P. aeruginosa) and fungi (C. albicans) with an MIC of 8-32 µg/mL. Although compounds exhibited relatively high cytotoxicity (the therapeutic index of 3), their chemotype can be used as a starter point for the development of disinfectants and antiseptics for targeting multidrug-resistant pathogens.

7.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014334

RESUMEN

New unsymmetrical monoterpenylhetaryl disulfides based on heterocyclic disulfides and monoterpene thiols were synthesized for the first time in 48-88% yields. Hydrolysis of disulfides with fragments of methyl esters of 2-mercaptonicotinic acid was carried out in 73-95% yields. The obtained compounds were evaluated for antioxidant, antibacterial, antifungal activity, cytotoxicity and mutagenicity.


Asunto(s)
Disulfuros , Compuestos de Sulfhidrilo , Antifúngicos/farmacología , Antioxidantes/farmacología , Ésteres , Mutágenos
8.
Mar Drugs ; 19(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807362

RESUMEN

Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.22.2) from Carica papaya latex immobilized on the matrixes of medium molecular (200 kDa) and high molecular (350 kDa) weight chitosans exhibits anti-biofilm activity and increases the antimicrobials efficiency against biofilm-embedded bacteria. Immobilization in glycine buffer (pH 9.0) allowed adsorption up to 30% of the total protein (mg g chitosan-1) and specific activity (U mg protein-1), leading to the preservation of more than 90% of the initial total activity (U mL-1). While optimal pH and temperature of the immobilized papain did not change, the immobilized enzyme exhibited elevated thermal stability and 6-7-fold longer half-life time in comparison with the soluble papain. While one-half of the total enzyme dissociates from both carriers in 24 h, this property could be used for wound-dressing materials design with dosed release of the enzyme to overcome the relatively high cytotoxicity of soluble papain. Our results indicate that both soluble and immobilized papain efficiently destroy biofilms formed by Staphylococcus aureus and Staphylococcus epidermidis. As a consequence, papain, both soluble and immobilized on medium molecular weight chitosan, is capable of potentiating the efficacy of antimicrobials against biofilm-embedded Staphylococci. Thus, papain immobilized on medium molecular weight chitosan appears a presumably beneficial agent for outer wound treatment for biofilms destruction, increasing antimicrobial treatment effectiveness.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Carica/enzimología , Quitosano/química , Portadores de Fármacos , Papaína/farmacología , Antibacterianos/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Composición de Medicamentos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Peso Molecular , Papaína/aislamiento & purificación , Staphylococcus aureus , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/crecimiento & desarrollo , Temperatura
9.
Sci Rep ; 10(1): 14849, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908166

RESUMEN

In mixed infections, the bacterial susceptibility differs significantly compared to monocultures of bacteria, and generally the concentrations of antibiotics required for the treatment increases drastically. For S. aureus and P. aeruginosa dual species biofilms, it has been numerously reported that P. aeruginosa decreases S. aureus susceptibility to a broad range of antibiotics, including beta-lactams, glycopeptides, aminoglycosides, macrolides, while sensitizes to quinolones via secretion of various metabolites. Here we show that S. aureus also modulates the susceptibility of P. aeruginosa to antibiotics in mixed cultures. Thus, S. aureus-P. aeruginosa consortium was characterized by tenfold increase in susceptibility to ciprofloxacin and aminoglycosides compared to monocultures. The same effect could be also achieved by the addition of cell-free culture of S. aureus to P. aeruginosa biofilm. Moreover, similar increase in antibiotics efficacy could be observed following addition of S. aureus suspension to the P. aeruginosa mature biofilm, compared to P. aeruginosa monoculture, and vice versa. These findings open promising perspectives to increase the antimicrobial treatment efficacy of the wounds infected with nosocomial pathogens by the transplantation of the skin residential microflora.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Simbiosis/efectos de los fármacos
10.
Int J Biol Macromol ; 164: 4205-4217, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916198

RESUMEN

Biofouling is among the key factors slowing down healing of acute and chronic wounds. Here we report both anti-biofilm and wound-healing properties of the chitosan-immobilized Ficin. The proposed chitosan-adsorption approach allowed preserving ~90% of the initial total activity of the enzyme (when using azocasein as a substrate) with stabilization factor of 4.9, and ~70% of its specific enzymatic activity. In vitro, the chitosan-immobilized Ficin degraded staphylococcal biofilms, this way increasing the efficacy of antimicrobials against biofilm-embedded bacteria. In vivo, in the presence of Ficin (either soluble or immobilized), the S.aureus-infected skin wound areas in rats reduced twofold after 4 instead of 6 days treatment. Moreover, topical application of the immobilized enzyme resulted in a 3-log reduction of S. aureus cell count on the wound surfaces in 6 days, compared to more than 10 days required to achieve the same effect in control. Additional advantages include smoother reepithelisation, and new tissue formation exhibiting collagen structure characteristics closely reminiscent of those observed in the native tissue. Taken together, our data suggest that both soluble and immobilized Ficin appear beneficial for the treatment of biofilm-associated infections, as well as speeding up wound healing and microbial decontamination.


Asunto(s)
Biopelículas/efectos de los fármacos , Quitosano/química , Enzimas Inmovilizadas , Ficaína/química , Ficaína/farmacología , Cicatrización de Heridas/efectos de los fármacos , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Cinética , Pruebas de Sensibilidad Microbiana , Proteolisis , Solubilidad , Staphylococcus aureus/efectos de los fármacos
11.
New Microbiol ; 42(1): 29-36, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30671584

RESUMEN

Among a variety of antimicrobial compounds, the derivatives of 2(5H)-furanone exhibit different effects on Firmicutes and Proteobacteria. While inhibiting quorum-dependent biofilm formation and virulence factor expression by Gram-negative bacteria through specific interference with the AI-2 signaling pathways, these compounds demonstrate bactericidal effects against Gram-positive bacteria. Here we report that 3,4-dichloro-5(S)-[(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yloxy]-2(5H)-furanone designed as F123 inhibits growth and biofilm formation by the food-poisoning bacterium Bacillus cereus at 8 µg/ ml and kills bacteria at 16 µg/ml. While the growth of Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Bacillus subtilis were also inhibited at 8-16 µg/ml of F123, no bactericidal effect on these strains was observed at concentrations up to 128 µg/ml, suggesting pronounced specificity of F123 for B. cereus. In a checker-board assay F123 increased the efficacy of amikacin, gentamicin and benzalkonium chloride against B. cereus with medians of fractional inhibitory concentration index of 0.38, 0.56 and 0.56, respectively. Moreover, the number of viable B. cereus cells in biofilm was reduced by more than 3 orders of magnitude at 64 µg/ml of F123, suggesting its chemotype as a promising enhancer for specific treatment of B. cereus-associated topical infections, including biofilm-embedded bacteria.


Asunto(s)
Antibacterianos , Bacillus cereus , Furanos/farmacología , Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Furanos/química , Bacterias Gramnegativas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Front Microbiol ; 8: 2246, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209288

RESUMEN

The gram-positive opportunistic bacterium Staphylococcus aureus is one of the most common causatives of a variety of diseases including skin and skin structure infection or nosocomial catheter-associated infections. The biofilm formation that is an important virulence factor of this microorganism renders the antibiotic therapy ineffective, because biofilm-embedded bacteria exhibit strongly increased tolerance to antimicrobials. Here, we describe a novel 3-chloro-5(S)-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy]-4-[4-methylphenylsulfonyl]-2(5H)-furanone (F105), possessing a sulfonyl group and l-menthol moiety. Minimal inhibitory and bactericidal concentration values (MIC and MBC) of F105 were 10 and 40 mg/L, respectively, suggesting F105 biocidal properties. F105 exhibits pronounced activity against biofilm-embedded S. aureus and increases the efficacy of aminoglycosides (amikacin, gentamicin, and kanamycin) and benzalkonium chloride with fractional inhibitory concentration index values of 0.33-0.44 and 0.29, respectively, suggesting an alternative external treatment option, e.g., for wound infections. Moreover, low concentrations (0.5-1.3 mg/L) of F105 reduced the MICs of these antimicrobials twofold. By using confocal laser scanning microscopy and CFU counting, we show explicitly that F105 also restores the antimicrobial activity of gentamicin and ampicillin against S. aureus biofilms by several orders of magnitude. Biofilm structures were not destroyed but sterilized, with embedded cells being almost completely killed at twofold MBC. While F105 is quite toxic (CC50/MBC ratio 0.2), our data suggest that the F105 chemotype might be a promising starting point for the development of complex topical agents for combined anti-staphylococcal biofilm-therapies restoring the efficacy of some antibiotics against difficult to treat S. aureus biofilm.

13.
Sci Rep ; 7: 46068, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387349

RESUMEN

Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses. Biofilm-embedded bacteria are generally inaccessible for antimicrobials, therefore the disruption of biofilm matrix is the potent approach to eradicate microbial biofilms. We demonstrate here the destruction of Staphylococcus aureus and Staphylococcus epidermidis biofilms with Ficin, a nonspecific plant protease. The biofilm thickness decreased two-fold after 24 hours treatment with Ficin at 10 µg/ml and six-fold at 1000 µg/ml concentration. We confirmed the successful destruction of biofilm structures and the significant decrease of non-specific bacterial adhesion to the surfaces after Ficin treatment using confocal laser scanning and atomic force microscopy. Importantly, Ficin treatment enhanced the effects of antibiotics on biofilms-embedded cells via disruption of biofilm matrices. Pre-treatment with Ficin (1000 µg/ml) considerably reduced the concentrations of ciprofloxacin and bezalkonium chloride required to suppress the viable Staphylococci by 3 orders of magnitude. We also demonstrated that Ficin is not cytotoxic towards human breast adenocarcinoma cells (MCF7) and dog adipose derived stem cells. Overall, Ficin is a potent tool for staphylococcal biofilm treatment and fabrication of novel antimicrobial therapeutics for medical and veterinary applications.


Asunto(s)
Biopelículas/efectos de los fármacos , Ficaína/farmacología , Antibacterianos/farmacología , Compuestos de Benzalconio/farmacología , Biopelículas/crecimiento & desarrollo , Ciprofloxacina/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Hidrólisis , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Staphylococcus/efectos de los fármacos , Staphylococcus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...