Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409582, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923659

RESUMEN

The preparation of cationic bis(hydrosilane)-coinage-metal complexes by chloride abstraction from the neutral metal chloride precursors with Na[BArF 4] is described. Unlike previously reported hydrosilane-stabilized copper and silver complexes, the presented complexes are cationic and feature two bidentate (ortho-silylphenyl)phosphine ligands. These complexes were fully characterized by NMR spectroscopy and X-ray diffraction analysis, revealing that both Si-H bonds are activated by the Lewis acidic cationic metal center. The new complexes were found to be effective in catalytic carbonyl hydrosilylation, leading to the corresponding silyl ethers under mild conditions without the addition of an external base. Combined mechanistic control experiments and quantum chemical calculations support an ionic outer-sphere mechanism, in which a neutral metal alkoxide species instead of a metal hydride is the key intermediate that interacts with the silylcarboxonium ion to generate the silyl ether.

2.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716885

RESUMEN

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

3.
J Org Chem ; 89(7): 4647-4656, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38497619

RESUMEN

Herein, we describe the synthesis of substituted oxepane derivatives through the skeletal remodeling of 4-hydroxy-2-cyclobutenones, which are readily prepared from commercially available dialkyl squarates upon their reaction with acrylonitrile. Mechanistically, a Rh(I)-catalyzed C-C bond formation and cleavage cascade is proposed. Specifically, a fused [3.2.0] bicycle is proposed to form from dialkyl squarate-derived cyclobutenols via an unusual Rh(I)-catalyzed intermolecular oxa-Michael addition of a tertiary alcohol with acrylonitrile, followed by an intramolecular conjugate addition/migratory insertion. Subsequent C(sp3)-C(sp3) bond cleavage through a Rh-catalyzed ß-carbon elimination is then theorized to furnish the oxepane scaffold. Computational studies support the formation of an intermediate [3.2.0] bicycle but also point to an alternative pathway for the formation of the oxepane products involving a Rh(III) intermediate. Additional studies have shown the overall process to be stereoretentive. The functional groups that are introduced in this process can be leveraged to form fused or bridged ring systems.

4.
Angew Chem Int Ed Engl ; 63(21): e202401433, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38433099

RESUMEN

We introduce the heterocumulene ligand [(Ad)NCC(tBu)]- (Ad=1-adamantyl (C10H15), tBu=tert-butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid-base chemistry, which promotes an unprecedented spin-state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1-adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI-=ArNC(CH3)CHC(CH3)NAr), Ar=2,6-iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2-=ArNC(CH3)CHC(CH2)NAr). Complex A reacts with C≡NAd, to generate the high-spin [VIII] complex with a κ1-N-ynamide ligand, [(BDI)V{κ1-N-(Ad)NCC(tBu)}(OTf)] (1). Conversely, B reacts with C≡NAd to generate a low-spin [VIII] diamagnetic complex having a chelated κ2-C,N-azaalleneyl ligand, [(dBDI)V{κ2-N,C-(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of 2 and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between 1 and 2.

5.
J Am Chem Soc ; 146(7): 4521-4531, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38346143

RESUMEN

In redox flow batteries, a compelling strategy for enhancing the charge capacity of redox-active organic molecules involves storing multiple electrons within a single molecule. However, this approach poses unique challenges such as chemical instability by forming radicals, elevated energy requirements, and unsustainable charge concentration. Ion pairing is a possible solution to achieve charge neutrality and engineer redox potential shifts but has received limited attention. In this study, we demonstrate that Li+ can stabilize naphthalene diimide (NDI) anions dissolved in acetonitrile and significantly shift the second cathodic potential close to the first. Our findings, supported by density functional theory calculations and Fourier transform infrared spectroscopy, indicate that dimeric NDI species form stable ion pairs with Li+. Conversely, K+ ions exhibit weak interactions, and cyclic voltammograms confirm significant potential shifts when stronger Lewis acids and solvents with lower donor numbers are employed. Galvanostatic examinations reveal a single voltage plateau with Li+, which indicates a rapid redox process involving doubly charged NDI2- with Li+. These aggregated ion pairs offer the additional benefits of hindering crossover events, contributing to excellent cyclability, and suppressing undesirable side reactions even after 1000 redox cycles.

6.
J Am Chem Soc ; 146(2): 1447-1454, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170978

RESUMEN

Chiral aziridines are important structural motifs found in natural products and various target molecules. They serve as versatile building blocks for the synthesis of chiral amines. While advances in catalyst design have enabled robust methods for enantioselective aziridination of activated olefins, simple and abundant alkyl-substituted olefins pose a significant challenge. In this work, we introduce a novel approach utilizing a planar chiral rhodium indenyl catalyst to facilitate the enantioselective aziridination of unactivated alkenes. This transformation exhibits a remarkable degree of functional group tolerance and displays excellent chemoselectivity favoring unactivated alkenes over their activated counterparts, delivering a wide range of enantioenriched high-value chiral aziridines. Computational studies unveil a stepwise aziridination mechanism in which alkene migratory insertion plays a central role. This process results in the formation of a strained four-membered metallacycle and serves as both the enantio- and rate-determining steps in the overall reaction.

7.
J Am Chem Soc ; 146(5): 2997-3009, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38272018

RESUMEN

Reported is the catalytic cyclic polymer synthesis by a 3d transition metal complex: a V(V) alkylidyne, [(dBDI)V≡CtBu(OEt2)] (1-OEt2), supported by the deprotonated ß-diketiminate dBDI2- (dBDI2- = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6-iPr2C6H3). Complex 1-OEt2 is a precatalyst for the polymerization of phenylacetylene (PhCCH) to give cyclic poly(phenylacetylene) (c-PPA), whereas its precursor, complex [(BDI)V≡CtBu(OTf)] (2-OTf; BDI- = [ArNC(CH3)]2CH, Ar = 2,6-iPr2C6H3, OTf = OSO2CF3), and the zwitterion [((C6F5)3B-dBDI)V≡CtBu(OEt2)] (3-OEt2) exhibit low catalytic activity despite having a neopentylidyne ligand. Cyclic polymer topologies were verified by size-exclusion chromatography (SEC) and intrinsic viscosity studies. A component of the mechanism of the cyclic polymerization reaction was probed by isolation and full characterization of 4- and 6-membered metallacycles as model intermediates. Metallacyclobutadiene (MCBD) and deprotiometallacyclobutadiene (dMCBD) complexes (dBDI)V[C(tBu)C(H)C(tBu)] (4-tBu) and (BDI)V[C(tBu)CC(Mes)] (5-Mes), respectively, were synthesized upon reaction with bulkier alkynes, tBu- (tBuCCH) and Mes-acetylene (MesCCH), with 1-OEt2. Furthermore, the reaction of the conjugate acid of 1-OEt2, [(BDI)V≡CtBu(OTf)] (2-OTf), with the conjugated base of phenylacetylene, lithium phenylacetylide (LiCCPh), yields the doubly deprotio-metallacycle complex, [Li(THF)4]{(BDI)V[C(Ph)CC(tBu)CC(Ph)]} (6). Protonation of the doubly deprotio-metallacycle complex 6 yields 6-H+, a catalytically active species toward the polymerization of PhCCH, for which the polymers were also confirmed to be cyclic by SEC studies. Computational mechanistic studies complement the experimental observations and provide insight into the mechanism of cyclic polymer growth. The noninnocence of the supporting dBDI2- ligand and its role in proton shuttling to generate deprotiometallacyclobutadiene (dMCBD) complexes that proposedly culminate in the formation of catalytically active V(III) species are also discussed. This work demonstrates how a dMCBD moiety can react with terminal alkynes to form cyclic polyalkynes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...