Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
BMC Immunol ; 20(1): 42, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718550

RESUMEN

BACKGROUND: Myeloid cells, especially mononuclear phagocytes, which include monocytes, macrophages and dendritic cells (DC), play vital roles in innate immunity, and in the initiation and maintenance of adaptive immunity. While T cell-associated activation pathways and cytokines have been identified and evaluated in inflammatory bowel disease (IBD) patients (Neurath, Nat Rev Gastroenterol Hepatol 14:269-78, 1989), the role of mononuclear phagocytes are less understood. Recent reports support the crucial role of DC subsets in the development of acute colitis models (Arimura et al., Mucosal Immunol 10:957-70, 2017), and suggest they may contribute to the pathogenesis of ulcerative colitis (UC) by inducing Th1/Th2/Th17 responses (Matsuno et al., Inflamm Bowel Dis 23:1524-34, 2017). RESULTS: We performed in silico analysis and evaluated the enrichment of immune cells, with a focus on mononuclear phagocytes in IBD patient colonic biopsies. Samples were from different gut locations, with different levels of disease severity, and with treatment response to current therapies. We observe enrichment of monocytes, M1 macrophages, activated DCs (aDCs) and plasmacytoid dendritic cells (pDCs) in inflamed tissues from various gut locations. This enrichment correlates with disease severity. Additionally, the same mononuclear phagocytes subsets are among the top enriched cell types in both infliximab and vedolizumab treatment non-responder samples. We further investigated the enrichment of selected DC and monocyte subsets based on gene signatures derived from a DC- and monocyte-focused single cell RNA-seq (scRNA-seq) study (Villani et al., Science 356:eaah4573, 2017), and verified enrichment in both inflamed tissues and those with treatment resistance. Moreover, we validated an increased mononuclear phagocyte subset abundance in a Dextran Sulphate Sodium (DSS) induced colitis model in C57Bl/6 mice representative of chronic inflammation. CONCLUSIONS: We conducted an extensive analysis of immune cell populations in IBD patient colonic samples and identified enriched subsets of monocytes, macrophages and dendritic cells in inflamed tissues. Understanding how they interact with other immune cells and other cells in the colonic microenvironment such as epithelial and stromal cells will help us to delineate disease pathogenesis.


Asunto(s)
Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Sistema Mononuclear Fagocítico/inmunología , Sistema Mononuclear Fagocítico/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Biopsia , Microambiente Celular , Colon/inmunología , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Resistencia a Medicamentos , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Infliximab/farmacología , Infliximab/uso terapéutico , Recuento de Leucocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Sistema Mononuclear Fagocítico/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología
3.
Stem Cells ; 30(11): 2512-22, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915504

RESUMEN

Cardiac regeneration following myocardial infarction rests with the potential of c-kit+ cardiac progenitor cells (CPCs) to repopulate damaged myocardium. The ability of CPCs to reconstitute the heart is restricted by patient age and disease progression. Increasing CPC proliferation, telomere length, and survival will improve the ability of autologous CPCs to be successful in myocardial regeneration. Prior studies have demonstrated enhancement of myocardial regeneration by engineering CPCs to express Pim-1 kinase, but cellular and molecular mechanisms for Pim-1-mediated effects on CPCs remain obscure. We find CPCs rapidly expand following overexpression of cardioprotective kinase Pim-1 (CPCeP), however, increases in mitotic rate are short-lived as late passage CPCePs proliferate similar to control CPCs. Telomere elongation consistent with a young phenotype is observed following Pim-1 modification of CPCeP; in addition, telomere elongation coincides with increased telomerase expression and activity. Interestingly, telomere length and telomerase activity normalize after several rounds of passaging, consistent with the ability of Pim-1 to transiently increase mitosis without resultant oncogenic transformation. Accelerating mitosis in CPCeP without immortalization represents a novel strategy to expand the CPC population in order to improve their therapeutic efficacy.


Asunto(s)
Mitosis , Miocardio/citología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Células Madre/fisiología , Homeostasis del Telómero , Animales , Cardiotoxinas/farmacología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Doxorrubicina/farmacología , Activación Enzimática , Expresión Génica , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Ratones , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/genética , Medicina Regenerativa , Células Madre/enzimología , Células Madre/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/efectos de los fármacos , Tiazoles/farmacología
4.
J Am Coll Cardiol ; 60(14): 1278-87, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22841153

RESUMEN

OBJECTIVES: The goal of this study was to demonstrate the enhancement of human cardiac progenitor cell (hCPC) reparative and regenerative potential by genetic modification for the treatment of myocardial infarction. BACKGROUND: Regenerative potential of stem cells to repair acute infarction is limited. Improved hCPC survival, proliferation, and differentiation into functional myocardium will increase efficacy and advance translational implementation of cardiac regeneration. METHODS: hCPCs isolated from the myocardium of heart failure patients undergoing left ventricular assist device implantation were engineered to express green fluorescent protein (hCPCe) or Pim-1-GFP (hCPCeP). Functional tests of hCPC regenerative potential were performed with immunocompromised mice by using intramyocardial adoptive transfer injection after infarction. Myocardial structure and function were monitored by echocardiographic and hemodynamic assessment for 20 weeks after delivery. hCPCe and hCPCeP expressing luciferase were observed by using bioluminescence imaging to noninvasively track persistence. RESULTS: hCPCeP exhibited augmentation of reparative potential relative to hCPCe control cells, as shown by significantly increased proliferation coupled with amelioration of infarction injury and increased hemodynamic performance at 20 weeks post-transplantation. Concurrent with enhanced cardiac structure and function, hCPCeP demonstrated increased cellular engraftment and differentiation with improved vasculature and reduced infarct size. Enhanced persistence of hCPCeP versus hCPCe was revealed by bioluminescence imaging at up to 8 weeks post-delivery. CONCLUSIONS: Genetic engineering of hCPCs with Pim-1 enhanced repair of damaged myocardium. Ex vivo gene delivery to modify stem cells has emerged as a viable option addressing current limitations in the field. This study demonstrates that efficacy of hCPCs from the failing myocardium can be safely and significantly enhanced through expression of Pim-1 kinase, setting the stage for use of engineered cells in pre-clinical settings.


Asunto(s)
Ingeniería Genética , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Animales , Proliferación Celular , Ecocardiografía , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemodinámica , Humanos , Mediciones Luminiscentes , Ratones , Miocitos Cardíacos/enzimología , Neovascularización Patológica , Proteínas Proto-Oncogénicas c-pim-1/genética , Trasplante de Células Madre , Células Madre/enzimología
5.
Circ Res ; 111(6): 750-60, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22800687

RESUMEN

RATIONALE: Cardiac progenitor cells are important for maintenance of myocardial structure and function, but molecular mechanisms governing these progenitor cells remain obscure and require elucidation to enhance regenerative therapeutic approaches. OBJECTIVE: To understand consequences of stem cell antigen-1 (Sca-1) deletion on functional properties of c-kit+ cardiac progenitor cells and myocardial performance using a Sca-1 knock-out/green fluorescent protein knock-in reporter mouse (ScaKI). METHODS AND RESULTS: Genetic deletion of Sca-1 results in early-onset cardiac contractile deficiency as determined by echocardiography and hemodynamics as well as age-associated hypertrophy. Resident cardiac progenitor cells in ScaKI mice do not respond to pathological damage in vivo, consistent with observations of impaired growth and survival of ScaKI cardiac progenitor cells in vitro. The molecular basis of the defect in ScaKI cardiac progenitor cells is associated with increased canonical Wnt signaling pathway activation consistent with molecular characteristics of lineage commitment. CONCLUSIONS: Genetic deletion of Sca-1 causes primary cardiac defects in myocardial contractility and repair consistent with impairment of resident cardiac progenitor cell proliferative capacity associated with altered canonical Wnt signaling.


Asunto(s)
Antígenos Ly/metabolismo , Corazón/fisiopatología , Proteínas de la Membrana/metabolismo , Miocardio/metabolismo , Células Madre/metabolismo , Animales , Antígenos Ly/genética , Proliferación Celular , Células Cultivadas , Ecocardiografía , Femenino , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipertrofia , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/patología , Factores de Tiempo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo
6.
Circ Res ; 111(1): 77-86, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22619278

RESUMEN

RATIONALE: Bone marrow-derived cells to treat myocardial injury improve cardiac function and support beneficial cardiac remodeling. However, survival of stem cells is limited due to low proliferation of transferred cells. OBJECTIVE: To demonstrate long-term potential of c-kit(+) bone marrow stem cells (BMCs) enhanced with Pim-1 kinase to promote positive cardiac remodeling. METHODS AND RESULTS: Lentiviral modification of c-kit(+) BMCs to express Pim-1 (BMCeP) increases proliferation and expression of prosurvival proteins relative to BMCs expressing green fluorescent protein (BMCe). Intramyocardial delivery of BMCeP at time of infarction supports improvements in anterior wall dimensions and prevents left ventricle dilation compared with hearts treated with vehicle alone. Reduction of the akinetic left ventricular wall was observed in BMCeP-treated hearts at 4 and 12 weeks after infarction. Early recovery of cardiac function in BMCeP-injected hearts facilitated modest improvements in hemodynamic function up to 12 weeks after infarction between cell-treated groups. Persistence of BMCeP is improved relative to BMCe within the infarct together with increased recruitment of endogenous c-kit(+) cells. Delivery of BMC populations promotes cellular hypertrophy in the border and infarcted regions coupled with an upregulation of hypertrophic genes. Thus, BMCeP treatment yields improved structural remodeling of infarcted myocardium compared with control BMCs. CONCLUSIONS: Genetic modification of BMCs with Pim-1 may serve as a therapeutic approach to promote recovery of myocardial structure. Future approaches may take advantage of salutary BMC actions in conjunction with other stem cell types to increase efficacy of cellular therapy and improve myocardial performance in the injured myocardium.


Asunto(s)
Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Infarto del Miocardio/cirugía , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Regeneración , Ingeniería de Tejidos , Animales , Apoptosis , Células de la Médula Ósea/patología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Lentivirus/genética , Masculino , Ratones , Contracción Miocárdica , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/patología , Fenotipo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/genética , Recuperación de la Función , Transducción de Señal , Factores de Tiempo , Ingeniería de Tejidos/métodos , Transducción Genética , Ultrasonografía , Función Ventricular Izquierda , Remodelación Ventricular
7.
Physiol Rev ; 91(3): 1023-70, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742795

RESUMEN

One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.


Asunto(s)
Miocardio/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Señalización del Calcio/fisiología , Cardiomiopatías/fisiopatología , Supervivencia Celular/fisiología , Activación Enzimática , Humanos , MicroARNs/metabolismo , Mitocondrias/enzimología , Contracción Miocárdica/fisiología , Neovascularización Fisiológica/fisiología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Caracteres Sexuales , Transducción de Señal/fisiología
8.
Proc Natl Acad Sci U S A ; 108(15): 6145-50, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21444791

RESUMEN

Nucleolar stress, characterized by loss of nucleolar integrity, has not been described in the cardiac context. In addition to ribosome biogenesis, nucleoli are critical for control of cell proliferation and stress responses. Our group previously demonstrated induction of the nucleolar protein nucleostemin (NS) in response to cardiac pathological insult. NS interacts with nucleophosmin (NPM), a marker of nucleolar stress with cytoprotective properties. The dynamic behavior of NS and NPM reveal that nucleolar disruption is an early event associated with stress response in cardiac cells. Rapid translocation of NS and NPM to the nucleoplasm and suppression of new preribosomal RNA synthesis occurs in both neonatal rat cardiomyocytes (NRCM) and cardiac progenitor cells (CPC) upon exposure to doxorubicin or actinomycin D. Silencing of NS significantly increases cell death resulting from doxorubicin treatment in CPC, whereas NPM knockdown alone induces cell death. Overexpression of either NS or NPM significantly decreases caspase 8 activity in cultured cardiomyocytes challenged with doxorubicin. The presence of altered nucleolar structures resulting from myocardial infarction in mice supports the model of nucleolar stress as a general response to pathological injury. Collectively, these findings serve as the initial description of myocardial nucleolar stress and establish the postulate that nucleoli acts as sensors of stress, regulating the cellular response to pathological insults.


Asunto(s)
Proteínas Portadoras/metabolismo , Nucléolo Celular/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Estrés Fisiológico , Animales , Aorta/metabolismo , Aorta/patología , Apoptosis , Nucléolo Celular/patología , Células Cultivadas , Constricción Patológica/metabolismo , Constricción Patológica/patología , Proteínas de Unión al GTP , Humanos , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Nucleofosmina , ARN Ribosómico/biosíntesis , Proteínas de Unión al ARN , Ratas
9.
Circ Res ; 106(5): 891-901, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20075333

RESUMEN

RATIONALE: Cardioprotective effects of Pim-1 kinase have been previously reported but the underlying mechanistic basis may involve a combination of cellular and molecular mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1 mediated cardioprotection provides important insights for designing therapeutic interventional strategies to treat heart disease. OBJECTIVE: Effects of cardiac-specific Pim-1 kinase expression on the cardiac progenitor cell (CPC) population were examined to determine whether Pim-1 mediates beneficial effects through augmenting CPC activity. METHODS AND RESULTS: Transgenic mice created with cardiac-specific Pim-1 overexpression (Pim-wt) exhibit enhanced Pim-1 expression in both cardiomyocytes and CPCs, both of which show increased proliferative activity assessed using 5-bromodeoxyuridine (BrdU), Ki-67, and c-Myc relative to nontransgenic controls. However, the total number of CPCs was not increased in the Pim-wt hearts during normal postnatal growth or after infarction challenge. These results suggest that Pim-1 overexpression leads to asymmetric division resulting in maintenance of the CPC population. Localization and quantitation of cell fate determinants Numb and alpha-adaptin by confocal microscopy were used to assess frequency of asymmetric division in the CPC population. Polarization of Numb in mitotic phospho-histone positive cells demonstrates asymmetric division in 65% of the CPC population in hearts of Pim-wt mice versus 26% in nontransgenic hearts after infarction challenge. Similarly, Pim-wt hearts had fewer cells with uniform alpha-adaptin staining indicative of symmetrically dividing CPCs, with 36% of the CPCs versus 73% in nontransgenic sections. CONCLUSIONS: These findings define a mechanistic basis for enhanced myocardial regeneration in transgenic mice overexpressing Pim-1 kinase.


Asunto(s)
Ciclo Celular , Proliferación Celular , Infarto del Miocardio/enzimología , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Regeneración , Células Madre/enzimología , Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Histonas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Mutación , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-pim-1/genética , Células Madre/patología , Factores de Tiempo
10.
Regen Med ; 4(6): 823-33, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19903002

RESUMEN

AIMS: Cardiac stem cells (CSCs) show potential as a cellular therapeutic approach to blunt tissue damage and facilitate reparative and regenerative processes after myocardial infarction. Despite multiple published reports of improvement, functional benefits remain modest using normal stem cells delivered by adoptive transfer into damaged myocardium. The goal of this study is to enhance survival and proliferation of CSCs that have undergone lineage commitment in early phases as evidenced by expression of proteins driven by the alpha-myosin heavy chain (alphaMHC) promoter. The early increased expression of survival kinases augments expansion of the cardiogenic CSC pool and subsequent daughter progeny. MATERIALS & METHODS: Normal CSCs engineered with fluorescent reporter protein constructs under control of the alphaMHC promoter show transgene protein expression, confirming activity of the promoter in CSCs. Cultured CSCs from both nontransgenic and cardiac-specific transgenic mice expressing survival kinases driven by the alphaMHC promoter were analyzed to characterize transgene expression following treatments to promote differentiation in culture. RESULTS & CONCLUSION: Therapeutic genes controlled by the alphaMHC promoter can be engineered into and expressed in CSCs and cardiomyocyte progeny with the goal of improving the efficacy of cardiac stem cell therapy.


Asunto(s)
Ingeniería Genética , Miocardio/citología , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Regiones Promotoras Genéticas/genética , Células Madre/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Técnicas para Inmunoenzimas , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas Proto-Oncogénicas c-pim-1/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes/fisiología
11.
Stem Cells ; 26(5): 1315-24, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18308948

RESUMEN

Cumulative evidence indicates that myocardium responds to growth or injury by recruitment of stem and/or progenitor cells that participate in repair and regenerative processes. Unequivocal identification of this population has been hampered by lack of reagents or markers specific to the recruited population, leading to controversies regarding the nature of these cells. Use of a transgenic mouse expressing green fluorescent protein driven by the c-kit promoter allows for unambiguous identification of this cell population. Green fluorescent protein (GFP) driven by the c-kit promoter labels a fraction of the c-kit+ cells recognized by antibody labeling for c-kit protein. Expression of GFP by the c-kit promoter and accumulation of GFP-positive cells in the myocardium is relatively high at birth compared with adult and declines between postnatal weeks 1 and 2, which tracks in parallel with expression of c-kit protein and c-kit-positive cells. Acute cardiomyopathic injury by infarction prompts increased expression of both GFP protein and GFP-labeled cells in the region of infarction relative to remote myocardium. Similar increases were observed for c-kit protein and cells with a slightly earlier onset and decline relative to the GFP signal. Cells coexpressing GFP, c-kit, and cardiogenic markers were apparent at 1-2 weeks postinfarction. Cardiac-resident c-kit+ cell cultures derived from the transgenic line express GFP that is diminished in parallel with c-kit by induction of differentiation. The use of genetically engineered mice validates and extends the concept of c-kit+ cells participating in the response to myocardial injury.


Asunto(s)
Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Endoteliales/citología , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Transporte de Proteínas , Células Madre/metabolismo , Factores de Tiempo
12.
Clin Cancer Res ; 14(1): 309-17, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18172283

RESUMEN

PURPOSE: Bendamustine has shown clinical activity in patients with disease refractory to conventional alkylator chemotherapy. The purpose of this study was to characterize the mechanisms of action of bendamustine and to compare it with structurally related compounds. EXPERIMENTAL DESIGN: Bendamustine was profiled in the National Cancer Institute in vitro antitumor screen. Microarray-based gene expression profiling, real-time PCR, immunoblot, cell cycle, and functional DNA damage repair analyses were used to characterize response to bendamustine and compare it with chlorambucil and phosphoramide mustard. RESULTS: Bendamustine displays a distinct pattern of activity unrelated to other DNA-alkylating agents. Its mechanisms of action include activation of DNA-damage stress response and apoptosis, inhibition of mitotic checkpoints, and induction of mitotic catastrophe. In addition, unlike other alkylators, bendamustine activates a base excision DNA repair pathway rather than an alkyltransferase DNA repair mechanism. CONCLUSION: These results suggest that bendamustine possesses mechanistic features that differentiate it from other alkylating agents and may contribute to its distinct clinical efficacy profile.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Ciclo Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Compuestos de Mostaza Nitrogenada/farmacología , Apoptosis/efectos de los fármacos , Clorhidrato de Bendamustina , Western Blotting , Línea Celular Tumoral , Clorambucilo/farmacología , Ciclofosfamida/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Citometría de Flujo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...