Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Lancet Microbe ; : 100920, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39159629

RESUMEN

BACKGROUND: The emergence of the artemisinin partial resistance (ART-R) mutation in the Plasmodium falciparum kelch13 gene (k13), Arg561His, in Rwanda and the regional presence of polymorphisms affecting sulfadoxine-pyrimethamine have raised concern in neighbouring Tanzania. The goal of this study was to assess the status of antimalarial resistance in Tanzania, with a focus on the border with Rwanda, to understand the distribution of the Arg561His mutation, partner drug resistance, and resistance to chemoprevention drugs. METHODS: In this cross-sectional survey, capillary dried blood spots were collected from malaria positive asymptomatic individuals in the community and symptomatic individuals in health facilities aged 6 months and older, in 13 regions of mainland Tanzania from Jan 31 to June 26, 2021. Exclusion criteria included residence of the areas other than the target sites, presenting to the health facility for care and treatment of conditions other than malaria, and not providing informed consent. Samples were assessed for antimalarial resistance polymorphisms and genetic relatedness using molecular inversion probes targeting P falciparum and short-read whole-genome sequencing. The primary outcome was the prevalence of molecular markers of antimalarial resistance at the region level, as well as at the district level in Kagera, a region in the northwest of the country at the border with Rwanda. FINDINGS: 6855 (88·1%) of 7782 capillary dried blood spot samples collected were successfully genotyped. The overall prevalence of k13 Arg561His in Kagera was 7·7% (90% CI 6·0-9·4; 50 of 649), with the highest prevalence in the districts near the Rwandan border (22·8% [31 of 136] in Karagwe, 14·4% [17 of 118]) in Kyerwa, and 1·4% [two of 144] in Ngara). k13 Arg561His was uncommon in the other regions. Haplotype analysis suggested that some of these parasites are related to isolates collected in Rwanda in 2015, supporting regional spread of Arg561His. However, a novel k13 Arg561His haplotype was observed, potentially indicating a second origin in the region. Other validated k13 resistance polymorphisms (one Arg622Ile and two Ala675Val isolates) were also identified. A region of prevalent dihydrofolate reductase Ile164Leu mutation, associated with sulfadoxine-pyrimethamine resistance, was also identified in Kagera (15·2% [12·6-17·8%]; 80 of 526). The mutant crt Lys76Thr mutation, associated with chloroquine and amodiaquine resistance, was uncommon, occurring only in 75 of 2861 genotyped isolates, whereases the wild-type mdr1 Asn86Tyr allele, associated with reduced sensitivity to lumefantrine, was found in 99·7% (3819 of 3830) of samples countrywide. INTERPRETATION: These findings show that the k13 Arg561His mutation is common in northwest Tanzania and that multiple emergences of ART-R, similar as to what was seen in southeast Asia, have occurred. Mutations associated with high levels of sulfadoxine-pyrimethamine resistance are common. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Understanding how multiple emergences interact with drivers of regional spread is essential for combating ART-R in Africa. FUNDING: This study was funded by the Bill & Melinda Gates Foundation and the National Institutes of Health.

2.
Lancet Infect Dis ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39159633

RESUMEN

BACKGROUND: In 2021, nationwide malaria molecular surveillance revealed a high prevalence of a validated artemisinin resistance marker, the kelch13 (k13) Arg561His mutation, in the Kagera region of northwestern Tanzania. We aimed to investigate the efficacy of artemether-lumefantrine and artesunate-amodiaquine and to confirm the presence of artemisinin partial resistance (ART-R) in the Karagwe district of this region. METHODS: This single-arm, therapeutic efficacy study was carried out at the Bukangara dispensary in the Karagwe district of the Kagera region in northwestern Tanzania. Eligible participants were aged between 6 months and 120 months, had confirmed Plasmodium falciparum asexual parasitaemia, and met other inclusion criteria according to WHO's standard protocol. Participants were enrolled, treated sequentially with either artemether-lumefantrine or artesunate-amodiaquine, and assessed clinically and parasitologically for 28 days as per WHO protocol. Parasitaemia was measured every 8 h until day 3, on day 7, and then during weekly follow-up visits until day 28. Mutations in the k13 gene and extended haplotypes with the mutations were analysed, and comparisons were made with previous samples collected in the same region of Kagera and in Rwanda and southeast Asia. The primary endpoint was PCR-corrected cure rate. FINDINGS: Between April 29 and Sept 1, 2022, 343 patients were screened, of whom 176 were enrolled: 88 in each treatment group. The PCR-corrected cure rate was 98% (95% CI 91-100) in the artemether-lumefantrine group and 100% (96-100) in the artesunate-amodiaquine group. Persistent parasitaemia on day 3 occurred in 11 (13%) of 88 patients in the artemether-lumefantrine group and 17 (19%) of 88 patients in the artesunate-amodiaquine group. Arg561His mutations on day 0 and parasitaemia on day 3 were reported in eight (9%) of 87 patients in the artemether-lumefantrine group and ten (12%) of 86 patients in the artesunate-amodiaquine group. The median parasite clearance half-life in patients harbouring parasites with Arg561His mutation was 6·1 h in the artemether-lumefantrine group and 6·0 h in the artesunate-amodiaquine group. Parasites with the Arg561His mutation were not similar to those from southeast Asia and Rwanda but had similar haplotypes to parasites reported in the same Tanzanian region of Kagera in 2021. INTERPRETATION: This study confirms the presence of ART-R in Tanzania, although artemether-lumefantrine and artesunate-amodiaquine showed high efficacy. A context-specific response strategy and vigilance to detect the reduced efficacy of current antimalarial treatments and ART-R in other parts of the country are urgently needed. FUNDING: The Bill & Melinda Gates Foundation and the US National Institutes of Health.

3.
medRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39148823

RESUMEN

The emergence of antimalarial drug resistance is a major threat to malaria control and elimination. Using whole genome sequencing of 282 P. falciparum samples collected during the 2018 Zambia National Malaria Indicator Survey, we determined the prevalence and spatial distribution of known and candidate antimalarial drug resistance mutations. High levels of genotypic resistance were found across Zambia to pyrimethamine, with over 94% (n=266) of samples having the Pfdhfr triple mutant (N51 I , C59 R , and S108 N ), and sulfadoxine, with over 84% (n=238) having the Pfdhps double mutant (A437 G and K540 E ). In northern Zambia, 5.3% (n=15) of samples also harbored the Pfdhps A581 G mutation. Although 29 mutations were identified in Pfkelch13 , these mutations were present at low frequency (<2.5%), and only three were WHO-validated artemisinin partial resistance mutations: P441 L (n=1, 0.35%), V568 M (n=2, 0.7%) and R622 T (n=1, 0.35%). Notably, 91 (32%) of samples carried the E431 K mutation in the Pfatpase6 gene, which is associated with artemisinin resistance. No specimens carried any known mutations associated with chloroquine resistance in the Pfcrt gene (codons 72-76). P. falciparum strains circulating in Zambia were highly resistant to sulfadoxine and pyrimethamine but remained susceptible to chloroquine and artemisinin. Despite this encouraging finding, early genetic signs of developing artemisinin resistance highlight the urgent need for continued vigilance and expanded routine genomic surveillance to monitor these changes.

4.
Antimicrob Agents Chemother ; : e0046624, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136468

RESUMEN

Novel antimalarials are urgently needed to combat rising resistance to available drugs. The imidazolopiperazine ganaplacide is a promising drug candidate, but decreased susceptibility of laboratory strains has been linked to polymorphisms in the Plasmodium falciparum cyclic amine resistance locus (PfCARL), acetyl-CoA transporter (PfACT), and UDP-galactose transporter (PfUGT). To characterize parasites causing disease in Africa, we assessed ex vivo drug susceptibilities to ganaplacide in 750 P. falciparum isolates collected in Uganda from 2017 to 2023. Drug susceptibilities were assessed using a 72-hour SYBR Green growth inhibition assay. The median IC50 for ganaplacide was 13.8 nM, but some isolates had up to 31-fold higher IC50s (31/750 with IC50 > 100 nM). To assess genotype-phenotype associations, we sequenced genes potentially mediating altered ganaplacide susceptibility in the isolates using molecular inversion probe and dideoxy sequencing methods. PfCARL was highly polymorphic, with eight mutations present in >5% of isolates. None of these eight mutations had previously been selected in laboratory strains with in vitro drug pressure and none were found to be significantly associated with decreased ganaplacide susceptibility. Mutations in PfACT and PfUGT were found in ≤5% of isolates, except for two frequent (>20%) mutations in PfACT; one mutation in PfACT (I140V) was associated with a modest decrease in susceptibility. Overall, Ugandan P. falciparum isolates were mostly highly susceptible to ganaplacide. Known resistance mediators were polymorphic, but mutations previously selected with in vitro drug pressure were not seen, and mutations identified in the Ugandan isolates were generally not associated with decreased ganaplacide susceptibility.

5.
Cells ; 13(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39056772

RESUMEN

The chromatin-associated protein WDR5 has been widely studied due to its role in histone modification and its potential as a pharmacological target for the treatment of cancer. In humans, the protein with highest sequence homology to WDR5 is encoded by the retrogene WDR5B, which remains unexplored. Here, we used CRISPR-Cas9 genome editing to generate WDR5B knockout and WDR5B-FLAG knock-in cell lines for further characterization. In contrast to WDR5, WDR5B exhibits low expression in pluripotent cells and is upregulated upon neural differentiation. Loss or shRNA depletion of WDR5B impairs cell growth and increases the fraction of non-viable cells in proliferating retinal pigment epithelial (RPE) cultures. CUT&RUN chromatin profiling in RPE and neural progenitors indicates minimal WDR5B enrichment at established WDR5 binding sites. These results suggest that WDR5 and WDR5B exhibit several divergent biological properties despite sharing a high degree of sequence homology.


Asunto(s)
Proliferación Celular , Epitelio Pigmentado de la Retina , Animales , Humanos , Diferenciación Celular , Línea Celular , Sistemas CRISPR-Cas/genética , Células Epiteliales/metabolismo , Edición Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología
6.
Res Sq ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39070647

RESUMEN

Background: Given the altered responses to both artemisinins and lumefantrine in Eastern Africa, monitoring antimalarial drug resistance in all African countries is paramount. Methods: We measured the susceptibility to six antimalarials using ex vivo growth inhibition assays (IC 50 ) for a total of 805 Plasmodium falciparum isolates obtained from travelers returning to France (2016-2023), mainly from West and Central Africa. Isolates were sequenced using molecular inversion probes (MIPs) targeting fourteen drug resistance genes across the parasite genome. Findings: Ex vivo susceptibility to several drugs has significantly decreased in 2019-2023 versus 2016-2018 parasite samples: lumefantrine (median IC 50 : 23·0 nM [IQR: 14·4-35·1] in 2019-2023 versus 13·9 nM [8·42-21·7] in 2016-2018, p<0·0001), monodesethylamodiaquine (35·4 [21·2-51·1] versus 20·3 nM [15·4-33·1], p<0·0001), and marginally piperaquine (20·5 [16·5-26·2] versus 18.0 [14·2-22·4] nM, p<0·0001). Only four isolates carried a validated pfkelch13 mutation. Multiple mutations in pfcrt and one in pfmdr1 (N86Y) were significantly associated with altered susceptibility to multiple drugs. The susceptibility to lumefantrine was altered by pfcrt and pfmdr1 mutations in an additive manner, with the wild-type haplotype ( pfcrt K76- pfmdr1 N86) exhibiting the least susceptibility. Interpretation: Our study on P. falciparum isolates from West and Central Africa indicates a low prevalence of molecular markers of artemisinin resistance but a significant decrease in susceptibility to the partner drugs that have been the most widely used since a decade -lumefantrine and amodiaquine. These phenotypic changes likely mark parasite adaptation to sustained drug pressure and call for intensifying the monitoring of antimalarial drug resistance in Africa.

7.
medRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38978652

RESUMEN

Plasmodium vivax transmission occurs throughout the tropics and is an emerging threat in areas of Plasmodium falciparum decline, causing relapse infections that complicate treatment and control. Targeted sequencing for P. falciparum has been widely deployed to detect population structure and the geographic spread of antimalarial and diagnostic resistance. However, there are fewer such tools for P. vivax . Leveraging global variation data, we designed four molecular inversion probe (MIP) genotyping panels targeting geographically differentiating SNPs, neutral SNPs, putative antimalarial resistance genes, and vaccine candidate genes. We deployed these MIP panels on 866 infections from the Peruvian Amazon and identified transmission networks with clonality (IBD>0.99), copy number variation in Pvdbp and multiple Pvrbps , fixation of putative antimalarial resistance, and balancing selection in 13 vaccine candidate genes. Our MIP panels are the broadest genotyping panel currently available and are poised for successful deployment in other regions of P. vivax transmission.

8.
medRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39072017

RESUMEN

Background: Given the altered responses to both artemisinins and lumefantrine in Eastern Africa, monitoring antimalarial drug resistance in all African countries is paramount. Methods: We measured the susceptibility to six antimalarials using ex vivo growth inhibition assays (IC50) for a total of 805 Plasmodium falciparum isolates obtained from travelers returning to France (2016-2023), mainly from West and Central Africa. Isolates were sequenced using molecular inversion probes (MIPs) targeting fourteen drug resistance genes across the parasite genome. Findings: Ex vivo susceptibility to several drugs has significantly decreased in 2019-2023 versus 2016-2018 parasite samples: lumefantrine (median IC50: 23·0 nM [IQR: 14·4-35·1] in 2019-2023 versus 13·9 nM [8·42-21·7] in 2016-2018, p<0·0001), monodesethylamodiaquine (35·4 [21·2-51·1] versus 20·3 nM [15·4-33·1], p<0·0001), and marginally piperaquine (20·5 [16·5-26·2] versus 18.0 [14·2-22·4] nM, p<0·0001). Only four isolates carried a validated pfkelch13 mutation. Multiple mutations in pfcrt and one in pfmdr1 (N86Y) were significantly associated with altered susceptibility to multiple drugs. The susceptibility to lumefantrine was altered by pfcrt and pfmdr1 mutations in an additive manner, with the wild-type haplotype (pfcrt K76-pfmdr1 N86) exhibiting the least susceptibility. Interpretation: Our study on P. falciparum isolates from West and Central Africa indicates a low prevalence of molecular markers of artemisinin resistance but a significant decrease in susceptibility to the partner drugs that have been the most widely used since a decade -lumefantrine and amodiaquine. These phenotypic changes likely mark parasite adaptation to sustained drug pressure and call for intensifying the monitoring of antimalarial drug resistance in Africa. Funding: This work was supported by the French Ministry of Health (grant to the French National Malaria Reference Center) and by the Agence Nationale de la Recherche (ANR-17-CE15-0013-03 to JC). JAB was supported by NIH R01AI139520. JR postdoctoral fellowship was funded by Institut de Recherche pour le Développement.

9.
medRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38883763

RESUMEN

The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013-2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample carrying K13 R622I, none of the isolates carried other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations in K13. However, 13% (CI, 9.6-17.2) of isolates had the AP2MU S160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015-2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.

10.
Am J Trop Med Hyg ; 111(2): 361-364, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38861981

RESUMEN

Increasing sulfadoxine-pyrimethamine (SP) resistance in the Democratic Republic of the Congo (DRC) has threatened its use for prevention of malaria in one of the most malarious countries in the world. Using geographic information on mining operations in the DRC and genetic data on SP drug resistance markers from the 2013-2014 Demographic and Health Surveys, we evaluated associations between close residence to mining and the presence of mutations conferring resistance to sulfadoxine. Close residential proximity to mining was associated with increased prevalence odds ratio (POR) of the dhps540E mutation (POR: 2.11, 95% uncertainty interval: 1.15-3.96) with adjustments for confounding variables and space. Our findings indicate that exposure to mining is associated with increased presence of an antimalarial drug resistance haplotype that threatens effective use of SP for vulnerable populations. Areas actively engaged in mining could be considered for interventions to reduce the spread of emerging drug resistance in the DRC.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Minería , Mutación , Pirimetamina , Sulfadoxina , República Democrática del Congo/epidemiología , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Sulfadoxina/farmacología , Prevalencia , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Femenino
11.
J Infect Dis ; 230(2): 497-504, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38874098

RESUMEN

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Coinfection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G, K540E, and A581G) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in 2 previously little-studied countries.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Refugiados , Humanos , Uganda/epidemiología , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Prevalencia , Preescolar , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico , Femenino , Masculino , Niño , Proteínas Protozoarias/genética , Lactante , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Sudán/epidemiología , Biomarcadores/sangre , Artemisininas/uso terapéutico , Artemisininas/farmacología , Parasitemia/epidemiología , Parasitemia/tratamiento farmacológico , Plasmodium malariae/genética , Plasmodium malariae/efectos de los fármacos
12.
Elife ; 122024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935423

RESUMEN

Background: The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission. Methods: To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018. Results: Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Conclusions: Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors. Funding: This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Tanzanía/epidemiología , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Malaria Falciparum/transmisión , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Humanos , Genotipo
14.
Malar J ; 23(1): 150, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755607

RESUMEN

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Mutación , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Artemisininas/farmacología , Antimaláricos/farmacología , Proteínas Protozoarias/genética , Resistencia a Medicamentos/genética , Rwanda , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Humanos , Antígenos de Protozoos/genética , Prevalencia , Niño , Adulto Joven , Adolescente , Adulto , Preescolar
15.
medRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746440

RESUMEN

In Africa, the first Plasmodium falciparum Kelch13 (K13) artemisinin partial resistance mutation 561H was first detected and validated in Rwanda. Surveillance to better define the extent of the emergence in Rwanda and neighboring countries as other mutations arise in East Africa is critical. We employ a novel scheme of liquid blood drop preservation combined with pooled sequencing to provide a cost-effective rapid assessment of resistance mutation frequencies at multiple collection sites across Rwanda and neighboring countries. Malaria-positive samples (n=5,465) were collected from 39 health facilities in Rwanda, Uganda, Tanzania, and the Democratic Republic of the Congo (DRC) between May 2022 and March 2023 and sequenced in 199 pools. In Rwanda, K13 561H and 675V were detected in 90% and 65% of sites with an average frequency of 19.0% (0-54.5%) and 5.0% (0-35.5%), respectively. In Tanzania, 561H had high frequency in multiple sites while it was absent from the DRC although 675V was seen at low frequency. Conceringly candidate mutations were observed: 441L, 449A, and 469F co-occurred with validated mutations suggesting they are arising under the same pressures. Other resistance markers associated with artemether-lumefantrine are common: P. falciparum multidrug resistance protein 1 N86 at 98.0% and 184F at 47.0% (0-94.3%) and P. falciparum chloroquine resistance transporter 76T at 14.7% (0-58.6%). Additionally, sulfadoxine-pyrimethamine-associated mutations show high frequencies. Overall, K13 mutations are rapidly expanding in the region further endangering control efforts with the potential of engendering partner drug resistance.

16.
Malar J ; 23(1): 139, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720288

RESUMEN

BACKGROUND: In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. METHODS: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. RESULTS: Based on Fws (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49). CONCLUSIONS: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.


Asunto(s)
Plasmodium falciparum , Polimorfismo Genético , Proteínas Protozoarias , Selección Genética , Humanos , Enfermedades Endémicas , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Tanzanía
17.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645051

RESUMEN

Dysfunction of the retinal pigment epithelium (RPE) is a common shared pathology in major degenerative retinal diseases despite variations in the primary etiologies of each disease. Due to their demanding and indispensable functional roles throughout the lifetime, RPE cells are vulnerable to genetic predisposition, external stress, and aging processes. Building upon recent advancements in stem cell technology for differentiating healthy RPE cells and recognizing the significant roles of small extracellular vesicles (sEV) in cellular paracrine and autocrine actions, we investigated the hypothesis that the RPE-secreted sEV alone can restore essential RPE functions and rescue photoreceptors in RPE dysfunction-driven retinal degeneration. Our findings support the rationale for developing intravitreal treatment of sEV. We demonstrate that intravitreally delivered sEV effectively penetrate the full thickness of the retina. Xenogenic intraocular administration of human-derived EVs did not induce acute immune reactions in rodents. sEV derived from human embryonic stem cell (hESC)-derived fully differentiated RPE cells, but not sEV-depleted conditioned cell culture media (CCM minus sEV), rescued photoreceptors and their function in a Royal College of Surgeons (RCS) rat model. This model is characterized by photoreceptor death and retinal degeneration resulting from a mutation in the MerTK gene in RPE cells. From the bulk RNA sequencing study, we identified 447 differently expressed genes in the retina after hESC-RPE-sEV treatment compared with the untreated control. Furthermore, 394 out of 447 genes (88%) showed a reversal in expression toward the healthy state in Long-Evans (LE) rats after treatment compared to the diseased state. Particularly, detrimental alterations in gene expression in RCS rats, including essential RPE functions such as phototransduction, vitamin A metabolism, and lipid metabolism were partially reversed. Defective photoreceptor outer segment engulfment due to intrinsic MerTK mutation was partially ameliorated. These findings suggest that RPE-secreted sEV may play a functional role similar to that of RPE cells. Our study justifies further exploration to fully unlock future therapeutic interventions with sEV in a broad array of degenerative retinal diseases.

18.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659956

RESUMEN

Recent developments in cardiac macrophage biology have broadened our understanding of the critical functions of macrophages in the heart. As a result, there is further interest in understanding the independent contributions of distinct subsets of macrophage to cardiac development and function. Here, we demonstrate that genetic loss of interferon regulatory factor 8 (Irf8)-positive embryonic-derived macrophages significantly disrupts cardiac conduction, chamber function, and innervation in adult zebrafish. At 4 months post-fertilization (mpf), homozygous irf8st96/st96 mutants have significantly shortened atrial action potential duration and significant differential expression of genes involved in cardiac contraction. Functional in vivo assessments via electro- and echocardiograms at 12 mpf reveal that irf8 mutants are arrhythmogenic and exhibit diastolic dysfunction and ventricular stiffening. To identify the molecular drivers of the functional disturbances in irf8 null zebrafish, we perform single cell RNA sequencing and immunohistochemistry, which reveal increased leukocyte infiltration, epicardial activation, mesenchymal gene expression, and fibrosis. Irf8 null hearts are also hyperinnervated and have aberrant axonal patterning, a phenotype not previously assessed in the context of cardiac macrophage loss. Gene ontology analysis supports a novel role for activated epicardial-derived cells (EPDCs) in promoting neurogenesis and neuronal remodeling in vivo. Together, these data uncover significant cardiac abnormalities following embryonic macrophage loss and expand our knowledge of critical macrophage functions in heart physiology and governing homeostatic heart health.

19.
Sci Rep ; 14(1): 8158, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589477

RESUMEN

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Asunto(s)
Antígenos de Grupos Sanguíneos , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Eliminación de Gen , Tanzanía/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Antígenos de Protozoos/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Instituciones de Salud , ADN
20.
Lancet Infect Dis ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38552654

RESUMEN

Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...