Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100308

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily that plays a critical role in promoting responses of T cells, B cells and NK cells. METHODS: Anti-CD27 antibodies were generated and selected for agonist activity using NF-кB luciferase reporter assays. Antibodies were humanized and characterized for agonism using in vitro T-cell proliferation assays. The epitope recognized on CD27 by MK-5890 was established by X-ray crystallography. Anti-tumor activity was evaluated in a human CD27 knock-in mouse. Preclinical safety was tested in rhesus monkeys. Pharmacodynamic properties were examined in mouse, rhesus monkeys and a phase 1 dose escalation clinical study in patients with cancer. RESULTS: Humanized anti-CD27 antibody MK-5890 (hIgG1) was shown to bind human CD27 on the cell surface with sub-nanomolar potency and to partially block binding to its ligand, CD70. Crystallization studies revealed that MK-5890 binds to a unique epitope in the cysteine-rich domain 1 (CRD1). MK-5890 activated CD27 expressed on 293T NF-κB luciferase reporter cells and, conditional on CD3 stimulation, in purified CD8+ T cells without the requirement of crosslinking. Functional Fc-receptor interaction was required to activate CD8+ T cells in an ex vivo tumor explant system and to induce antitumor efficacy in syngeneic murine subcutaneous tumor models. MK-5890 had monotherapy efficacy in these models and enhanced efficacy of PD-1 blockade. MK-5890 reduced in an isotype-dependent and dose-dependent manner circulating, but not tumor-infiltrating T-cell numbers in these mouse models. In rhesus monkey and human patients, reduction in circulating T cells was transient and less pronounced than in mouse. MK-5890 induced transient elevation of chemokines MCP-1, MIP-1α, and MIP-1ß in the serum of mice, rhesus monkeys and patients with cancer. MK-5890 was well tolerated in rhesus monkeys and systemic exposure to MK-5890 was associated with CD27 occupancy at all doses. CONCLUSIONS: MK-5890 is a novel CD27 agonistic antibody with the potential to complement the activity of PD-1 checkpoint inhibition in cancer immunotherapy and is currently undergoing clinical evaluation.


Asunto(s)
Neoplasias , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Animales , Anticuerpos Monoclonales/uso terapéutico , Recuento de Células , Epítopos , Humanos , Inmunoterapia , Macaca mulatta , Ratones , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1
2.
Antibodies (Basel) ; 10(1)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33671864

RESUMEN

Reversible antibody self-association, while having major developability and therapeutic implications, is not fully understood or readily predictable and correctable. For a strongly self-associating humanized mAb variant, resulting in unacceptable viscosity, the monovalent affinity of self-interaction was measured in the low µM range, typical of many specific and biologically relevant protein-protein interactions. A face-to-face interaction model extending across both the heavy-chain (HC) and light-chain (LC) Complementary Determining Regions (CDRs) was apparent from biochemical and mutagenesis approaches as well as computational modeling. Light scattering experiments involving individual mAb, Fc, Fab, and Fab'2 domains revealed that Fabs self-interact to form dimers, while bivalent mAb/Fab'2 forms lead to significant oligomerization. Site-directed mutagenesis of aromatic residues identified by homology model patch analysis and self-docking dramatically affected self-association, demonstrating the utility of these predictive approaches, while revealing a highly specific and tunable nature of self-binding modulated by single point mutations. Mutagenesis at these same key HC/LC CDR positions that affect self-interaction also typically abolished target binding with notable exceptions, clearly demonstrating the difficulties yet possibility of correcting self-association through engineering. Clear correlations were also observed between different methods used to assess self-interaction, such as Dynamic Light Scattering (DLS) and Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS). Our findings advance our understanding of therapeutic protein and antibody self-association and offer insights into its prediction, evaluation and corrective mitigation to aid therapeutic development.

3.
Antibodies (Basel) ; 9(4)2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266498

RESUMEN

We report the novel crystal structure and characterization of symmetrical, homodimeric humanized heavy-chain-only antibodies or dimers (HC2s). HC2s were found to be significantly coexpressed and secreted along with mAbs from transient CHO HC/LC cotransfection, resulting in an unacceptable mAb developability attribute. Expression of full-length HC2s in the absence of LC followed by purification resulted in HC2s with high purity and thermal stability similar to conventional mAbs. The VH and CH1 portion of the heavy chain (or Fd) was also efficiently expressed and yielded a stable, covalent, and reducible dimer (Fd2). Mutagenesis of all heavy chain cysteines involved in disulfide bond formation revealed that Fd2 intermolecular disulfide formation was similar to Fabs and elucidated requirements for Fd2 folding and expression. For one HC2, we solved the crystal structure of the Fd2 domain to 2.9 Å, revealing a highly symmetrical homodimer that is structurally similar to Fabs and is mediated by conserved (CH1) and variable (VH) contacts with all CDRs positioned outward for target binding. Interfacial dimer contacts revealed by the crystal structure were mutated for two HC2s and were found to dramatically affect HC2 formation while maintaining mAb bioactivity, offering a potential means to modulate novel HC2 formation through engineering. These findings indicate that human heavy-chain dimers can be secreted efficiently in the absence of light chains, may show good physicochemical properties and stability, are structurally similar to Fabs, offer insights into their mechanism of formation, and may be amenable as a novel therapeutic modality.

4.
MAbs ; 12(1): 1743053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32249670

RESUMEN

Monoclonal antibodies play an increasingly important role for the development of new drugs across multiple therapy areas. The term 'developability' encompasses the feasibility of molecules to successfully progress from discovery to development via evaluation of their physicochemical properties. These properties include the tendency for self-interaction and aggregation, thermal stability, colloidal stability, and optimization of their properties through sequence engineering. Selection of the best antibody molecule based on biological function, efficacy, safety, and developability allows for a streamlined and successful CMC phase. An efficient and practical high-throughput developability workflow (100 s-1,000 s of molecules) implemented during early antibody generation and screening is crucial to select the best lead candidates. This involves careful assessment of critical developability parameters, combined with binding affinity and biological properties evaluation using small amounts of purified material (<1 mg), as well as an efficient data management and database system. Herein, a panel of 152 various human or humanized monoclonal antibodies was analyzed in biophysical property assays. Correlations between assays for different sets of properties were established. We demonstrated in two case studies that physicochemical properties and key assay endpoints correlate with key downstream process parameters. The workflow allows the elimination of antibodies with suboptimal properties and a rank ordering of molecules for further evaluation early in the candidate selection process. This enables any further engineering for problematic sequence attributes without affecting program timelines.


Asunto(s)
Anticuerpos Monoclonales , Descubrimiento de Drogas/métodos , Flujo de Trabajo , Humanos , Ingeniería de Proteínas/métodos
5.
BMC Biotechnol ; 16: 23, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911368

RESUMEN

BACKGROUND: The ability to site-specifically conjugate a protein to a payload of interest (e.g., a fluorophore, small molecule pharmacophore, oligonucleotide, or other protein) has found widespread application in basic research and drug development. For example, antibody-drug conjugates represent a class of biotherapeutics that couple the targeting specificity of an antibody with the chemotherapeutic potency of a small molecule drug. While first generation antibody-drug conjugates (ADCs) used random conjugation approaches, next-generation ADCs are employing site-specific conjugation. A facile way to generate site-specific protein conjugates is via the aldehyde tag technology, where a five amino acid consensus sequence (CXPXR) is genetically encoded into the protein of interest at the desired location. During protein expression, the Cys residue within this consensus sequence can be recognized by ectopically-expressed formylglycine generating enzyme (FGE), which converts the Cys to a formylglycine (fGly) residue. The latter bears an aldehyde functional group that serves as a chemical handle for subsequent conjugation. RESULTS: The yield of Cys conversion to fGly during protein production can be variable and is highly dependent on culture conditions. We set out to achieve consistently high yields by modulating culture conditions to maximize FGE activity within the cell. We recently showed that FGE is a copper-dependent oxidase that binds copper in a stoichiometric fashion and uses it to activate oxygen, driving enzymatic turnover. Building upon that work, here we show that by supplementing cell culture media with copper we can routinely reach high yields of highly converted protein. We demonstrate that cells incorporate copper from the media into FGE, which results in increased specific activity of the enzyme. The amount of copper required is compatible with large scale cell culture, as demonstrated in fed-batch cell cultures with antibody titers of 5 g · L(-1), specific cellular production rates of 75 pg · cell(-1) · d(-1), and fGly conversion yields of 95-98 %. CONCLUSIONS: We describe a process with a high yield of site-specific formylglycine (fGly) generation during monoclonal antibody production in CHO cells. The conversion of Cys to fGly depends upon the activity of FGE, which can be ensured by supplementing the culture media with 50 uM copper(II) sulfate.


Asunto(s)
Aldehídos/química , Anticuerpos/química , Cobre/metabolismo , Medios de Cultivo/química , Glicina/metabolismo , Aldehídos/análisis , Aldehídos/metabolismo , Animales , Anticuerpos/análisis , Anticuerpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Glicina/química
6.
J Biol Chem ; 290(25): 15730-15745, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25931126

RESUMEN

To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cysteine to formylglycine in aldehyde tags on intact monoclonal antibodies. During the development of these conditions, we discovered that pretreating FGE with copper(II) is required for high turnover rates and yields. After further investigation, we confirmed that both aerobic prokaryotic (Streptomyces coelicolor) and eukaryotic (Homo sapiens) FGEs contain a copper cofactor. The complete kinetic parameters for both forms of FGE are described, along with a proposed mechanism for FGE catalysis that accounts for the copper-dependent activity.


Asunto(s)
Proteínas Bacterianas/química , Coenzimas/química , Cobre/química , Streptomyces coelicolor/enzimología , Sulfatasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Cobre/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Streptomyces coelicolor/genética , Sulfatasas/genética , Sulfatasas/metabolismo
7.
Eur J Med Chem ; 88: 3-9, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25176286

RESUMEN

In the context of antibody-drug conjugates (ADCs), noncleavable linkers provide a means to deliver cytotoxic small molecules to cell targets while reducing systemic toxicity caused by nontargeted release of the free drug. Additionally, noncleavable linkers afford an opportunity to change the chemical properties of the small molecule to improve potency or diminish affinity for multidrug transporters, thereby improving efficacy. We employed the aldehyde tag coupled with the hydrazino-iso-Pictet-Spengler (HIPS) ligation to generate a panel of site-specifically conjugated ADCs that varied only in the noncleavable linker portion. The ADC panel comprised antibodies carrying a maytansine payload ligated through one of five different linkers. Both the linker-maytansine constructs alone and the resulting ADC panel were characterized in a variety of in vitro and in vivo assays measuring biophysical and functional properties. We observed that slight differences in linker design affected these parameters in disparate ways, and noted that efficacy could be improved by selecting for particular attributes. These studies serve as a starting point for the exploration of more potent noncleavable linker systems.


Asunto(s)
Anticuerpos/química , Antineoplásicos/química , Inmunoconjugados/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inmunoconjugados/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones SCID , Conformación Molecular
8.
Bioconjug Chem ; 25(7): 1331-41, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24924618

RESUMEN

It is becoming increasingly clear that site-specific conjugation offers significant advantages over conventional conjugation chemistries used to make antibody-drug conjugates (ADCs). Site-specific payload placement allows for control over both the drug-to-antibody ratio (DAR) and the conjugation site, both of which play an important role in governing the pharmacokinetics (PK), disposition, and efficacy of the ADC. In addition to the DAR and site of conjugation, linker composition also plays an important role in the properties of an ADC. We have previously reported a novel site-specific conjugation platform comprising linker payloads designed to selectively react with site-specifically engineered aldehyde tags on an antibody backbone. This chemistry results in a stable C-C bond between the antibody and the cytotoxin payload, providing a uniquely stable connection with respect to the other linker chemistries used to generate ADCs. The flexibility and versatility of the aldehyde tag conjugation platform has enabled us to undertake a systematic evaluation of the impact of conjugation site and linker composition on ADC properties. Here, we describe the production and characterization of a panel of ADCs bearing the aldehyde tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that in a panel of ADCs with aldehyde tags at different locations, the site of conjugation has a dramatic impact on in vivo efficacy and pharmacokinetic behavior in rodents; this advantage translates to an improved safety profile in rats as compared to a conventional lysine conjugate.


Asunto(s)
Aldehídos/química , Anticuerpos Monoclonales/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Receptor ErbB-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunoconjugados/farmacología , Ratones , Ratones SCID , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
PLoS One ; 8(7): e66879, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861750

RESUMEN

Surface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3 ligase Parkin. As a prerequisite for the screen, a large number of SPR tests were performed to characterize and validate the active form of Parkin. A set of compounds was designed and used to define optimal SPR assay conditions for this fragment screen. Using these conditions, more than 5000 pre-selected fragments from our in-house library were screened for binding to Parkin. Additionally, all fragments were simultaneously screened for binding to two off target proteins to exclude promiscuous binding compounds. A low hit rate was observed that is in line with hit rates usually obtained by other HTS screening assays. All hits were further tested in dose responses on the target protein by SPR for confirmation before channeling the hits into Nuclear Magnetic Resonance (NMR) and other hit-confirmation assays.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Fragmentos de Péptidos/química , Resonancia por Plasmón de Superficie , Ubiquitina-Proteína Ligasas/química , Ditiotreitol/química , Ditiotreitol/metabolismo , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/métodos , Cinética , Ligandos , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Sustancias Reductoras/química , Sustancias Reductoras/metabolismo , Resonancia por Plasmón de Superficie/métodos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
10.
ChemMedChem ; 8(8): 1295-313, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23794260

RESUMEN

Polo-like kinase-2 (Plk-2) has been implicated as the dominant kinase involved in the phosphorylation of α-synuclein in Lewy bodies, which are one of the hallmarks of Parkinson's disease neuropathology. Potent, selective, brain-penetrant inhibitors of Plk-2 were obtained from a structure-guided drug discovery approach driven by the first reported Plk-2-inhibitor complexes. The best of these compounds showed excellent isoform and kinome-wide selectivity, with physicochemical properties sufficient to interrogate the role of Plk-2 inhibition in vivo. One such compound significantly decreased phosphorylation of α-synuclein in rat brain upon oral administration and represents a useful probe for future studies of this therapeutic avenue toward the potential treatment of Parkinson's disease.


Asunto(s)
Encéfalo/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , alfa-Sinucleína/metabolismo , Animales , Sitios de Unión , Barrera Hematoencefálica/metabolismo , Femenino , Células HEK293 , Semivida , Humanos , Masculino , Ratones , Simulación de Dinámica Molecular , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley
11.
Bioorg Med Chem Lett ; 23(9): 2743-9, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23522834

RESUMEN

Polo-like kinase-2 (Plk-2) is a potential therapeutic target for Parkinson's disease and this Letter describes the SAR of a series of dihydropteridinone based Plk-2 inhibitors. By optimizing both the N-8 substituent and the biaryl region of the inhibitors we obtained single digit nanomolar compounds such as 37 with excellent selectivity for Plk-2 over Plk-1. When dosed orally in rats, compound 37 demonstrated a 41-45% reduction of pS129-α-synuclein levels in the cerebral cortex.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Administración Oral , Animales , Encéfalo/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Semivida , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Pteridinas/síntesis química , Pteridinas/química , Pteridinas/farmacocinética , Ratas , Relación Estructura-Actividad , Quinasa Tipo Polo 1
12.
J Neurosci Methods ; 215(2): 245-57, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23537934

RESUMEN

Tyrosine hydroxylase (TH) catalyses the rate-limiting step in the biosynthesis of catecholamines. TH expression is regulated in a tissue-specific manner during neuronal development and differentiation. Because of its key regulatory role in central and peripheral catecholamine synthesis, TH is associated with the pathogenesis of several neurological and psychiatric diseases, including Parkinson's disease, dystonia, schizophrenia, affective disorders, and cardiovascular diseases. Therefore, developing a quantitative method to monitor the changes in TH expression in disease models could facilitate the identification and characterisation of neuromodulatory and neuroprotective therapeutic agents. The present report describes the generation and characterisation of a new set of monoclonal TH antibodies and the development of a novel sandwich ELISA for the quantitative detection of the TH protein in rodent brain tissue. This ELISA exhibits excellent reproducibility and good linearity in the analysis of complex brain tissue lysates. The cross-validation of the TH ELISA using semi-quantitative TH Western blot methods and HPLC measurement of dopamine levels suggests that the new TH ELISA is sufficiently sensitive to detect small-to-moderate region-specific differences, developmental changes, and Parkinson's disease-related changes in TH expression in rodent brains. This new TH ELISA also offers greater flexibility than conventional HPLC-based dopamine assays because the optimal tissue lysis buffer used for the detection of TH in brain tissue is also compatible with the analysis of other proteins associated with Parkinson's disease, such as α-synuclein, suggesting that this TH ELISA could be used in a multiplexed format.


Asunto(s)
Encéfalo/metabolismo , Ensayo de Inmunoadsorción Enzimática , Enfermedad de Parkinson/patología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales , Biotina , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Dopamina/metabolismo , Femenino , Humanos , Proteínas de Filamentos Intermediarios/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Enfermedad de Parkinson/genética , Ratas , Ratas Sprague-Dawley , Manejo de Especímenes , Tirosina 3-Monooxigenasa/inmunología
13.
PLoS One ; 7(7): e40443, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792325

RESUMEN

TH17 cells enter tissues to facilitate pathogenic autoimmune responses, including multiple sclerosis (MS). However, the adhesion molecules involved in the unique migratory capacity of TH17 cells, into both inflamed and uninflamed tissues remain unclear. Herein, we characterize MCAM (CD146) as an adhesion molecule that defines human TH17 cells in the circulation; following in vitro restimulation of human memory T cells, nearly all of the capacity to secrete IL-17 is contained within the population of cells expressing MCAM. Furthermore, we identify the MCAM ligand as laminin 411, an isoform of laminin expressed within the vascular endothelial basement membranes under inflammatory as well as homeotstatic conditions. Purified MCAM-Fc binds to laminin 411 with an affinity of 27 nM, and recognizes vascular basement membranes in mouse and human tissue. MCAM-Fc binding was undetectable in tissue from mice with targeted deletion of laminin 411, indicating that laminin 411 is a major tissue ligand for MCAM. An anti-MCAM monoclonal antibody, selected for inhibition of laminin binding, as well as soluble MCAM-Fc, inhibited T cell adhesion to laminin 411 in vitro. When administered in vivo, the antibody reduced TH17 cell infiltration into the CNS and ameliorated disease in an animal model of MS. Our data suggest that MCAM and laminin 411 interact to facilitate TH17 cell entry into tissues and promote inflammation.


Asunto(s)
Plexo Coroideo/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Laminina/fisiología , Células Th17/fisiología , Animales , Antígeno CD146/metabolismo , Células CHO , Movimiento Celular , Polaridad Celular , Proliferación Celular , Plexo Coroideo/inmunología , Plexo Coroideo/patología , Cricetinae , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Matriz Extracelular/metabolismo , Femenino , Humanos , Interleucina-17/metabolismo , Interleucina-1beta/fisiología , Interleucinas/metabolismo , Ligandos , Ratones , Ratones Noqueados , Unión Proteica , Células Th17/metabolismo , Interleucina-22
14.
Alzheimers Res Ther ; 2(6): 36, 2010 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-21190552

RESUMEN

INTRODUCTION: Inhibition of gamma-secretase presents a direct target for lowering Aß production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy. METHODS: In vitro assays monitoring inhibitor potencies at APP γ-site cleavage (equivalent to Aß40), and Notch ε-site cleavage, in conjunction with a single cell assay to simultaneously monitor selectivity for inhibition of Aß production vs. Notch signaling were developed to discover APP selective gamma-secretase inhibitors. In vivo efficacy for acute reduction of brain Aß was determined in the PDAPP transgene model of AD, as well as in wild-type FVB strain mice. In vivo selectivity was determined following seven days x twice per day (b.i.d.) treatment with 15 mg/kg/dose to 1,000 mg/kg/dose ELN475516, and monitoring brain Aß reduction vs. Notch signaling endpoints in periphery. RESULTS: The APP selective gamma-secretase inhibitors ELN318463 and ELN475516 reported here behave as classic gamma-secretase inhibitors, demonstrate 75- to 120-fold selectivity for inhibiting Aß production compared with Notch signaling in cells, and displace an active site directed inhibitor at very high concentrations only in the presence of substrate. ELN318463 demonstrated discordant efficacy for reduction of brain Aß in the PDAPP compared with wild-type FVB, not observed with ELN475516. Improved in vivo safety of ELN475516 was demonstrated in the 7d repeat dose study in wild-type mice, where a 33% reduction of brain Aß was observed in mice terminated three hours post last dose at the lowest dose of inhibitor tested. No overt in-life or post-mortem indications of systemic toxicity, nor RNA and histological end-points indicative of toxicity attributable to inhibition of Notch signaling were observed at any dose tested. CONCLUSIONS: The discordant in vivo activity of ELN318463 suggests that the potency of gamma-secretase inhibitors in AD transgenic mice should be corroborated in wild-type mice. The discovery of ELN475516 demonstrates that it is possible to develop APP selective gamma-secretase inhibitors with potential for treatment for AD.

15.
J Biol Chem ; 285(5): 3417-27, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19923222

RESUMEN

Immunotherapy targeting of amyloid beta (Abeta) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Abeta-targeted immunotherapy has also been demonstrated to reverse Abeta-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Abeta, Abeta(3-7), differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Abeta in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Abeta. The conformation of the Abeta peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Abeta:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Abeta species postulated to underlie cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Animales , Conducta Animal , Reactivos de Enlaces Cruzados/farmacología , Cristalografía por Rayos X/métodos , Modelos Animales de Enfermedad , Epítopos/química , Heterocigoto , Humanos , Cinética , Masculino , Ratones , Conformación Molecular , Proteínas Recombinantes/química
16.
J Immunol ; 173(4): 2324-30, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15294945

RESUMEN

CD148 is a receptor-like protein tyrosine phosphatase expressed on a wide variety of cell types. Through the use flow cytometry and immunofluorescence microscopy on tissue sections, we examined the expression of CD148 on multiple murine hemopoietic cell lineages. We found that CD148 is moderately expressed during all stages of B cell development in the bone marrow, as well as peripheral mature B cells. In contrast, CD148 expression on thymocytes and mature T cells is substantially lower. However, stimulation of peripheral T cells through the TCR leads to an increase of CD148 expression. This up-regulation on T cells can be partially inhibited by reagents that block the activity of src family kinases, calcineurin, MEK, or PI3K. Interestingly, CD148 levels are elevated on freshly isolated T cells from MRL lpr/lpr and CTLA-4-deficient mice, two murine models of autoimmunity. Together, these expression data along with previous biochemical data suggest that CD148 may play an important regulatory role to control an immune response.


Asunto(s)
Inmunidad Celular , Leucocitos/metabolismo , Proteínas Tirosina Fosfatasas/biosíntesis , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Cricetinae , Inhibidores Enzimáticos/farmacología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Leucocitos/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Proteínas Tirosina Fosfatasas/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
17.
Proc Natl Acad Sci U S A ; 101(1): 260-5, 2004 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-14691262

RESUMEN

Developmentally regulated V(D)J recombination profoundly influences immune repertoires, but the underlying mechanisms are poorly understood. In the endogenous T cell receptor Cgamma1 cluster, the 3' Vgamma3 gene (closest to Jgamma1) rearranges preferentially in the fetal period whereas rearrangement of the 5' Vgamma2 gene predominates in the adult. Reversing the positions of the Vgamma2 and Vgamma3 genes in a genomic transgene resulted in decreased rearrangement of the now 5' Vgamma3 gene in the fetal thymus and increased rearrangement of the now 3' Vgamma2 gene. The reversed rearrangement pattern was not accompanied by significant changes in chromatin accessibility of the relocated Vgamma genes. The results support a model in which the 3' location is the key determinant of rearrangement in the fetus, after which there is a promoter-dependent inactivation of Vgamma3 rearrangement in favor of Vgamma2 rearrangement.


Asunto(s)
Reordenamiento Génico de la Cadena gamma de los Receptores de Antígenos de los Linfocitos T , Animales , Células Dendríticas/inmunología , Feto/inmunología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Modelos Genéticos , Modelos Inmunológicos , Regiones Promotoras Genéticas , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...