Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(21): e2300921, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37166044

RESUMEN

Over the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces. It is recently shown that replacing the metal in the capacitor of a transmon with tantalum yields record relaxation and coherence times for superconducting qubits, motivating a detailed study of the tantalum surface. In this work, the chemical profile of the surface of tantalum films grown on c-plane sapphire using variable energy X-ray photoelectron spectroscopy (VEXPS) is studied. The different oxidation states of tantalum that are present in the native oxide resulting from exposure to air are identified, and their distribution through the depth of the film is measured. Furthermore, it is shown how the volume and depth distribution of these tantalum oxidation states can be altered by various chemical treatments. Correlating these measurements with detailed measurements of quantum devices may elucidate the underlying microscopic sources of loss.

2.
Neurobiol Aging ; 118: 106-107, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914472

RESUMEN

One potential therapeutic strategy for Alzheimer disease (AD) is to promote degradation of amyloid beta (Aß) and we previously demonstrated that the lysosomal protease tripeptidyl peptidase 1 (TPP1) can degrade Aß fibrils in vitro. In this study, we tested the hypothesis that increasing levels of TPP1 might promote degradation of Aß under physiological conditions, slowing or preventing its accumulation in the brain with subsequent therapeutic benefits. We used 2 approaches to increase TPP1 activity in the brain of J20 mice, an AD model that accumulates Aß and exhibits cognitive defects: transgenic overexpression of TPP1 in the brain and a pharmacological approach employing administration of recombinant TPP1. While we clearly observed the expected AD phenotype of the J20 mice based on pathology and measurement of behavioral and cognitive defects, we found that elevation of TPP1 activity by either experimental approach failed to have any measurable beneficial effect on disease phenotype.


Asunto(s)
Enfermedad de Alzheimer , Tripeptidil Peptidasa 1 , Enfermedad de Alzheimer/patología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Aminopeptidasas/farmacología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Serina Proteasas/genética , Serina Proteasas/metabolismo , Serina Proteasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA