Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 170, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016302

RESUMEN

BACKGROUND: The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS: The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS: We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Reproducción , Polinización/genética , Transcriptoma , Flores
2.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502055

RESUMEN

Among the natural mechanisms used for wheat hybrid breeding, the most desirable is the system combining the cytoplasmic male sterility (cms) of the female parent with the fertility-restoring genes (Rf) of the male parent. The objective of this study was to identify Rf candidate genes in the wheat genome on the basis of transcriptome sequencing (RNA-seq) and paralog analysis data. Total RNA was isolated from the anthers of two fertility-restorer (Primépi and Patras) and two non-restorer (Astoria and Grana) varieties at the tetrad and late uninucleate microspore stages. Of 36,912 differentially expressed genes (DEGs), 21 encoding domains in known fertility-restoring proteins were selected. To enrich the pool of Rf candidates, 52 paralogs (PAGs) of the 21 selected DEGs were included in the analyses. The expression profiles of most of the DEGs and PAGs determined bioinformatically were as expected (i.e., they were overexpressed in at least one fertility-restorer variety). However, these results were only partially consistent with the quantitative real-time PCR data. The DEG and PAG promoters included cis-regulatory elements common among PPR-encoding genes. On the basis of the obtained results, we designated seven genes as Rf candidate genes, six of which were identified for the first time in this study.


Asunto(s)
Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Triticum/genética , Proteínas de Plantas/metabolismo , Polen/genética , Poliploidía , Transcriptoma , Triticum/fisiología
3.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925031

RESUMEN

According to current opinion, the first step of benzoxazinoids (BXs) synthesis, that is, the conversion of indole-3-glycerol phosphate to indole, occurs exclusively in the photosynthesising parts of plants. However, the results of our previous work and some other studies suggest that this process may also occur in the roots. In this study, we provide evidence that the first step of BXs synthesis does indeed occur in the roots of rye seedlings. We detected ScBx1 transcripts, BX1 enzyme, and six BXs (2-hydroxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-1,4-benzoxazin-3-one, (2R)-2-O-ß-d-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one glucoside, 2,4-dihydroxy- 7-methoxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside, and 6-methoxy-2-benzoxazolinone) in the roots developed from seeds deprived of the coleoptile at 2 days after sowing (i.e., roots without contact with aerial parts). In roots regenerated in vitro, both ScBx1 transcripts and BX1 enzyme were detected at a low but still measurable levels. Thus, BXs are able to be synthesised in both the roots and above-ground parts of rye plants.


Asunto(s)
Benzoxazinas/metabolismo , Secale/metabolismo , Secuencia de Aminoácidos , Benzoxazinas/química , Vías Biosintéticas/genética , Biología Computacional , Expresión Génica , Genes de Plantas , Inmunohistoquímica , Indol-3-Glicerolfosfato Sintasa/genética , Indol-3-Glicerolfosfato Sintasa/metabolismo , Microscopía Inmunoelectrónica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Plastidios/ultraestructura , Secale/genética , Plantones/metabolismo , Homología de Secuencia de Aminoácido
4.
BMC Genomics ; 22(1): 81, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509072

RESUMEN

BACKGROUND: The genetic diversity and gene pool characteristics must be clarified for efficient genome-wide association studies, genomic selection, and hybrid breeding. The aim of this study was to evaluate the genetic structure of 509 wheat accessions representing registered varieties and advanced breeding lines via the high-density genotyping-by-sequencing approach. RESULTS: More than 30% of 13,499 SNP markers representing 2162 clusters were mapped to genes, whereas 22.50% of 26,369 silicoDArT markers overlapped with coding sequences and were linked in 3527 blocks. Regarding hexaploidy, perfect sequence matches following BLAST searches were not sufficient for the unequivocal mapping to unique loci. Moreover, allelic variations in homeologous loci interfered with heterozygosity calculations for some markers. Analyses of the major genetic changes over the last 27 years revealed the selection pressure on orthologs of the gibberellin biosynthesis-related GA2 gene and the senescence-associated SAG12 gene. A core collection representing the wheat population was generated for preserving germplasm and optimizing breeding programs. CONCLUSIONS: Our results confirmed considerable differences among wheat subgenomes A, B and D, with D characterized by the lowest diversity but the highest LD. They revealed genomic regions that have been targeted by breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Mapeo Cromosómico , Variación Genética , Genoma de Planta , Genotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Triticum/genética
6.
J Appl Genet ; 56(3): 287-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25666974

RESUMEN

Benzoxazinoids (BX) are major secondary metabolites of gramineous plants that play an important role in disease resistance and allelopathy. They also have many other unique properties including anti-bacterial and anti-fungal activity, and the ability to reduce alfa-amylase activity. The biosynthesis and modification of BX are controlled by the genes Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes have been mapped in maize, wheat and rye. However, the genetic basis of BX biosynthesis remains largely uncharacterized apart from some data from maize and wheat. The aim of this study was to isolate, sequence and characterize five genes (ScBx1, ScBx2, ScBx3, ScBx4 and ScBx5) encoding enzymes involved in the synthesis of DIBOA, an important defense compound of rye. Using a modified 3D procedure of BAC library screening, seven BAC clones containing all of the ScBx genes were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of these genes, including their promoters, introns and 3'UTRs. Comparative analysis showed that the ScBx genes are similar to those of other Poaceae species, especially to the TaBx genes. The polymorphisms present both in the coding sequences and non-coding regions of ScBx in relation to other Bx genes are predicted to have an impact on the expression, structure and properties of the encoded proteins.


Asunto(s)
Genes de Plantas , Ácidos Hidroxámicos/química , Secale/genética , Vías Biosintéticas/genética , Biología Computacional , ADN de Plantas/genética , Exones , Biblioteca de Genes , Intrones , Regiones Promotoras Genéticas , Secale/química , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...