Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3610, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688927

RESUMEN

Puberty is a crucial phase for the development of female sexual behavior. Growing evidence suggests that stress during this period may interfere with the development of sexual behavior. However, the neural circuits involved in this alteration remain elusive. Here, we demonstrated in mice that pubertal stress permanently disrupted sexual performance without affecting sexual preference. This was associated with a reduced expression and activation of neuronal nitric oxide synthase (nNOS) in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Fiber photometry revealed that VMHvl nNOS neurons are strongly responsive to male olfactory cues with this activation being substantially reduced in pubertally stressed females. Finally, treatment with a NO donor partially restored sexual performance in pubertally stressed females. This study provides insights into the involvement of VMHvl nNOS in the processing of olfactory cues important for the expression of female sexual behavior. In addition, exposure to stress during puberty disrupts the integration of male olfactory cues leading to reduced sexual behavior.


Asunto(s)
Óxido Nítrico Sintasa de Tipo I , Conducta Sexual Animal , Maduración Sexual , Estrés Psicológico , Animales , Femenino , Masculino , Conducta Sexual Animal/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Ratones , Estrés Psicológico/fisiopatología , Neuronas/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Señales (Psicología) , Ratones Endogámicos C57BL , Olfato/fisiología , Donantes de Óxido Nítrico/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38337026

RESUMEN

Although the participation of sex hormones and sex hormone-responsive neurons in aggressive behavior has been extensively studied, the role of other systems within the hypothalamus-pituitary-gonadal (HPG) axis remains elusive. Here we assessed how the gonadotropin-releasing hormone (GnRH) and kisspeptin systems are impacted by escalated aggression in male mice. We used a combination of social isolation and aggression training (IST) to exacerbate mice's aggressive behavior. Next, low-aggressive (group-housed, GH) and highly aggressive (IST) mice were compared regarding neuronal activity in the target populations and hormonal levels, using immunohistochemistry and ELISA, respectively. Finally, we used pharmacological and viral approaches to manipulate neuropeptide signaling and expression, subsequently evaluating its effects on behavior. IST mice exhibited enhanced aggressive behavior compared to GH controls, which was accompanied by elevated neuronal activity in GnRH neurons and arcuate nucleus kisspeptin neurons. Remarkably, IST mice presented an increased number of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV). In addition, IST mice exhibited elevated levels of luteinizing hormone (LH) in serum. Accordingly, activation and blockade of GnRH receptors (GnRHR) exacerbated and reduced aggression, respectively. Surprisingly, kisspeptin had intricate effects on aggression, i.e., viral ablation of AVPV-kisspeptin neurons impaired the training-induced rise in aggressive behavior whereas kisspeptin itself strongly reduced aggression in IST mice. Our results indicate that IST enhances aggressive behavior in male mice by exacerbating HPG-axis activity. Particularly, increased GnRH neuron activity and GnRHR signaling were found to underlie aggression whereas the relationship with kisspeptin remains puzzling.

3.
Psychol Med ; 53(8): 3461-3470, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35301969

RESUMEN

BACKGROUND: Increasing numbers of adolescents seek help for gender-identity questions. Consequently, requests for medical treatments, such as puberty suppression, are growing. However, studies investigating the neurobiological substrate of gender incongruence (when birth-assigned sex and gender identity do not align) are scarce, and knowledge about the effects of puberty suppression on the developing brain of transgender youth is limited. METHODS: Here we cross-sectionally investigated sex and gender differences in regional fractional anisotropy (FA) as measured by diffusion MR imaging, and the impact of puberty on alterations in the white-matter organization of 35 treatment-naive prepubertal children and 41 adolescents with gender incongruence, receiving puberty suppression. The transgender groups were compared with 79 age-matched, treatment-naive cisgender (when sex and gender align) peers. RESULTS: We found that transgender adolescents had lower FA in the bilateral inferior fronto-occipital fasciculus (IFOF), forceps major and corpus callosum than cisgender peers. In addition, average FA values of the right IFOF correlated negatively with adolescents' cumulative dosage of puberty suppressants received. Of note, prepubertal children also showed significant FA group differences in, again, the right IFOF and left cortico-spinal tract, but with the reverse pattern (transgender > cisgender) than was seen in adolescents. CONCLUSIONS: Importantly, our results of lower FA (indexing less longitudinal organization, fiber coherence, and myelination) in the IFOF of gender-incongruent adolescents replicate prior findings in transgender adults, suggesting a salient neural correlate of gender incongruence. Findings highlight the complexity with which (pubertal) sex hormones impact white-matter development and add important insight into the neurobiological substrate associated with gender incongruence.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Adulto , Niño , Adolescente , Humanos , Masculino , Femenino , Imagen de Difusión Tensora/métodos , Identidad de Género , Sustancia Blanca/diagnóstico por imagen , Encéfalo , Imagen por Resonancia Magnética , Anisotropía
4.
Front Endocrinol (Lausanne) ; 13: 957114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034455

RESUMEN

Classically the neurobiology of aggression has been studied exclusively in males. Thus, females have been considered mildly aggressive except during lactation. Interestingly, recent studies in rodents and humans have revealed that non-lactating females can show exacerbated and pathological aggression similarly to males. This review provides an overview of recent findings on the neuroendocrine mechanisms regulating aggressive behavior in females. In particular, the focus will be on novel rodent models of exaggerated aggression established in non-lactating females. Among the neuromodulatory systems influencing female aggression, special attention has been given to sex-steroids and sex-steroid-sensitive neuronal populations (i.e., the core nuclei of the neural pathway of aggression) as well as to the neuropeptides oxytocin and vasopressin which are major players in the regulation of social behaviors.


Asunto(s)
Agresión , Animales , Arginina Vasopresina , Femenino , Humanos , Oxitocina , Receptores de Oxitocina , Roedores , Conducta Social
5.
J Neuroendocrinol ; 34(2): e13050, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34708466

RESUMEN

Widespread sex differences in human brain structure and function have been reported. Research on animal models has demonstrated that sex differences in brain and behavior are induced by steroid hormones during specific, hormone sensitive, developmental periods. It was shown that typical male neural and behavioral characteristics develop under the influence of testosterone, mostly acting during perinatal development. By contrast, typical female neural and behavioral characteristics may actually develop under the influence of estradiol during a specific prepubertal period. This review provides an overview of our current knowledge on the role of steroid hormones in the sexual differentiation of the human brain. Both clinical and neuroimaging data obtained in patients with altered androgen levels/actions (i.e., congenital adrenal hyperplasia or complete androgen insensitivity syndrome [CAIS]), point to an important role of (prenatal) androgens in inducing typical male neural and psychosexual characteristics in humans. In contrast to rodents, there appears to be no obvious role for estrogens in masculinizing the human brain. Furthermore, data from CAIS also suggest a contribution of sex chromosome genes to the development of the human brain. The final part of this review is dedicated to a brief discussion of gender incongruence, also known as gender dysphoria, which has been associated with an altered or less pronounced sexual differentiation of the brain.


Asunto(s)
Síndrome de Resistencia Androgénica , Diferenciación Sexual , Síndrome de Resistencia Androgénica/complicaciones , Andrógenos , Animales , Encéfalo , Femenino , Hormonas Esteroides Gonadales , Humanos , Masculino , Embarazo , Esteroides
6.
Neuropharmacology ; 198: 108762, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34437905

RESUMEN

It was recently shown that kisspeptin neurons in the anteroventral periventricular area (AVPV) orchestrate female sexual behavior, including lordosis behavior and mate preference. A potential target of AVPV kisspeptin signaling could be neurons expressing the neuronal form of nitric oxide synthase (nNOS) in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Therefore, in the present study, we further refined the role of the VHMvl in female sexual behavior. Adult female mice received a bilateral cannula aimed at the VMHvl. A single injection with kisspeptin (Kp-10) or SNAP/BAY, a nitric oxide donor, significantly increased lordosis, whereas the nNOS inhibitor l-NAME decreased it. None of these drugs affected mate preference. Interestingly, administration of GnRH into the VMHvl had no effect on lordosis or mate preference. To determine whether the stimulatory effect of Kp-10 on lordosis was specific to the VMHvl, an additional group of females received Kp-10 directly into the paraventricular nucleus (PVN). No effect was found on lordosis and mate preference. These results suggest that kisspeptin most likely modulates lordosis behavior through nNOS neurons in the VMHvl whereas mate preference is modulated by kisspeptin through a separate neuronal circuit not including the VMHvl.


Asunto(s)
Kisspeptinas/fisiología , Preferencia en el Apareamiento Animal/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/fisiología , Conducta Sexual Animal/fisiología , Transducción de Señal/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Femenino , Hormona Liberadora de Gonadotropina/farmacología , Kisspeptinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , NG-Nitroarginina Metil Éster/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores
7.
Handb Clin Neurol ; 180: 297-313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225936

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus are at the core of reproductive functioning. GnRH released into the median eminence regulates the secretion of the gonadotropins from the anterior pituitary, which in turn activates gametogenesis and steroid synthesis by the gonads. The GnRH system displays functional sex differences: GnRH is secreted in pulses at a constant frequency in men, whereas in women, pulse frequency varies over the menstrual cycle. In both sexes, GnRH release is regulated by sex steroid hormones, acting at the level of the hypothalamus and the anterior pituitary in a classic feedback loop. Because GnRH neurons do not express sex steroid receptors, hormone effects on GnRH release are presumed to be mediated indirectly through other steroid-sensitive neuronal systems, which then converge onto GnRH cell bodies and/or terminals. Human genetic studies demonstrated that kisspeptin (KP) as well as neurokinin B (NKB) signaling are both potent regulators of GNRH secretion. In humans, postmortem studies using immunohistochemistry have shown that women have higher KP and NKB expression in the infundibular nucleus than men. Sex differences in KP expression are present throughout life, which is from the infant/prepubertal into the elderly period, whereas sex differences in NKB expression do not emerge until adulthood. KP and NKB are often coexpressed together with dynorphin by the same population of neurons, also known as KDNy neurons in other species. Indeed, significant coexpression between KP and NKB but not with Dynorphin has been observed thereby challenging the KDNy concept in humans. Female-typical expression of both KP and NKB were observed in the infundibular nucleus of trans women (male sex assigned at birth and female gender identity). Taken together, sex differences in KP and NKB expression most likely reflect organizational actions of sex steroid hormones on the developing brain but they also remain sensitive to circulating sex steroids in adulthood. The female-dominant sex difference in infundibular KP and NKB expression suggests that this brain region is most likely involved in both the negative and positive feedback actions of estrogens on GnRH secretion. Finally, the sex-reversal observed in KP and NKB expression in trans women might reflect, at least partially, an atypical sexual differentiation of the brain.


Asunto(s)
Identidad de Género , Hipotálamo , Kisspeptinas , Neuroquinina B , Reproducción , Femenino , Humanos , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Masculino , Neuroquinina B/metabolismo
8.
Nat Rev Endocrinol ; 17(2): 83-96, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288917

RESUMEN

The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.


Asunto(s)
Disruptores Endocrinos/farmacología , Exposición a Riesgos Ambientales , Epigénesis Genética/efectos de los fármacos , Estradiol/metabolismo , Hormona Liberadora de Gonadotropina/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Movimiento Celular , Metilación de ADN/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , GABAérgicos/metabolismo , Células Germinativas/metabolismo , Ácido Glutámico/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Código de Histonas/efectos de los fármacos , Humanos , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Masculino , Neuronas/metabolismo , Ovulación/efectos de los fármacos , Ovulación/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal
9.
Transgend Health ; 5(4): 246-257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376803

RESUMEN

Purpose: Pubertal suppression is standard of care for early pubertal transgender youth to prevent the development of undesired and distressing secondary sex characteristics incongruent with gender identity. Preliminary evidence suggests pubertal suppression improves mental health functioning. Given the widespread changes in brain and cognition that occur during puberty, a critical question is whether this treatment impacts neurodevelopment. Methods: A Delphi consensus procedure engaged 24 international experts in neurodevelopment, gender development, puberty/adolescence, neuroendocrinology, and statistics/psychometrics to identify priority research methodologies to address the empirical question: is pubertal suppression treatment associated with real-world neurocognitive sequelae? Recommended study approaches reaching 80% consensus were included in the consensus parameter. Results: The Delphi procedure identified 160 initial expert recommendations, 44 of which ultimately achieved consensus. Consensus study design elements include the following: a minimum of three measurement time points, pubertal staging at baseline, statistical modeling of sex in analyses, use of analytic approaches that account for heterogeneity, and use of multiple comparison groups to minimize the limitations of any one group. Consensus study comparison groups include untreated transgender youth matched on pubertal stage, cisgender (i.e., gender congruent) youth matched on pubertal stage, and an independent sample from a large-scale youth development database. The consensus domains for assessment includes: mental health, executive function/cognitive control, and social awareness/functioning. Conclusion: An international interdisciplinary team of experts achieved consensus around primary methods and domains for assessing neurodevelopmental effects (i.e., benefits and/or difficulties) of pubertal suppression treatment in transgender youth.

10.
Arch Sex Behav ; 49(2): 455-465, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32056039

RESUMEN

Click-evoked otoacoustic emissions (CEOAEs) are echo-like sounds, generated by the inner ear in response to click-stimuli. A sex difference in emission strength is observed in neonates and adults, with weaker CEOAE amplitudes in males. These differences are assumed to originate from testosterone influences during prenatal male sexual differentiation and to remain stable throughout life. However, recent studies suggested activational, postnatal effects of sex hormones on CEOAEs. Adolescents diagnosed with gender dysphoria (GD) may receive gonadotropin-releasing hormone analogs (GnRHa) in order to suppress endogenous sex hormones and, therefore, pubertal maturation, followed by cross-sex hormone (CSH) treatment. Using a cross-sectional design, we examined whether hormonal interventions in adolescents diagnosed with GD (62 trans boys, assigned female at birth, self-identifying as male; 43 trans girls, assigned male at birth, self-identifying as female), affected their CEOAEs compared to age- and sex-matched controls (44 boys, 37 girls). Sex-typical differences in CEOAE amplitude were observed among cisgender controls and treatment-naïve trans boys but not in other groups with GD. Treatment-naïve trans girls tended to have more female-typical CEOAEs, suggesting hypomasculinized early sexual differentiation, in support of a prominent hypothesis on the etiology of GD. In line with the predicted suppressive effects of androgens, trans boys receiving CSH treatment, i.e., testosterone plus GnRHa, showed significantly weaker right-ear CEOAEs compared with control girls. A similar trend was seen in trans boys treated with GnRHa only. Unexpectedly, trans girls showed CEOAE masculinization with addition of estradiol. Our findings show that CEOAEs may not be used as an unequivocal measure of prenatal androgen exposure as they can be modulated postnatally by sex hormones, in the form of hormonal treatment.


Asunto(s)
Disforia de Género/sangre , Disforia de Género/fisiopatología , Emisiones Otoacústicas Espontáneas/fisiología , Diferenciación Sexual/fisiología , Adolescente , Niño , Estudios Transversales , Femenino , Humanos , Masculino
11.
Semin Reprod Med ; 37(2): 84-92, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31847028

RESUMEN

Sexual behavior is essential for the perpetuation of a species. In female rodents, mate preference and lordosis behavior depend heavily on the integration of olfactory cues into the neuroendocrine brain, yet its underlying neural circuits are not well understood. We previously revealed that kisspeptin neurons in the anteroventral periventricular nucleus/periventricular nucleus continuum (AVPv/PeN) are activated by male olfactory cues in female mice. Here, we further reveal that male-directed mate preferences and lordosis are impaired in kisspeptin knockout mice but are rescued by a single injection with kisspeptin. Acute ablation of AVPV/PeN kisspeptin neurons in adult females impaired mate preference and lordosis behavior. Conversely, optogenetic activation of these neurons triggered lordosis behavior. Kisspeptin neurons act through classical GPR54/GnRH signaling in stimulating mate preferences, but unexpectedly, GPR54/GnRH neuronal ablation did not affect lordosis behavior. Therefore, to identify the downstream components of the neural circuit involved in lordosis behavior, we employed genetic transsynaptic tracing in combination with viral tract tracing from AVPV/PeN kisspeptin neurons. We observed that kisspeptin neurons are communicating with neurons expressing the neuronal form of nitric oxide synthase. These results suggest that hypothalamic nitric oxide signaling is an important mechanism downstream of kisspeptin neurons in the neural circuit governing lordosis behavior in female mice.


Asunto(s)
Kisspeptinas/metabolismo , Conducta Sexual Animal , Conducta Sexual , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Masculino , Óxido Nítrico/metabolismo , Postura , Conducta Sexual Animal/fisiología
12.
Curr Top Behav Neurosci ; 43: 45-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30599078

RESUMEN

Men and women differ, not only in their anatomy but also in their behavior. Research using animal models has convincingly shown that sex differences in the brain and behavior are induced by sex hormones during a specific, hormone-sensitive period during early development. Thus, male-typical psychosexual characteristics seem to develop under the influence of testosterone, mostly acting during early development. By contrast, female-typical psychosexual characteristics may actually be organized under the influence of estradiol during a specific prepubertal period. The sexual differentiation of the human brain also seems to proceed predominantly under the influence of sex hormones. Recent studies using magnetic resonance imaging have shown that several sexually differentiated aspects of brain structure and function are female-typical in women with complete androgen insensitivity syndrome (CAIS), who have a 46 XY karyotype but a female phenotype due to complete androgen resistance, suggesting that these sex differences most likely reflect androgen action, although feminizing effects of estrogens or female-typical socialization cannot be ruled out. By contrast, some male-typical neural characteristics were also observed in women with CAIS suggesting direct effects of sex chromosome genes in the sexual differentiation of the human brain. In conclusion, the sexual differentiation of the human brain is most likely a multifactorial process including both sex hormone and sex chromosome effects, acting in parallel or in combination.


Asunto(s)
Diferenciación Sexual , Síndrome de Resistencia Androgénica , Animales , Encéfalo , Femenino , Hormonas Esteroides Gonadales , Humanos , Masculino , Caracteres Sexuales , Cromosomas Sexuales
14.
Nat Commun ; 9(1): 400, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374161

RESUMEN

Sexual behavior is essential for the survival of many species. In female rodents, mate preference and copulatory behavior depend on pheromones and are synchronized with ovulation to ensure reproductive success. The neural circuits driving this orchestration in the brain have, however, remained elusive. Here, we demonstrate that neurons controlling ovulation in the mammalian brain are at the core of a branching neural circuit governing both mate preference and copulatory behavior. We show that male odors detected in the vomeronasal organ activate kisspeptin neurons in female mice. Classical kisspeptin/Kiss1R signaling subsequently triggers olfactory-driven mate preference. In contrast, copulatory behavior is elicited by kisspeptin neurons in a parallel circuit independent of Kiss1R involving nitric oxide signaling. Consistent with this, we find that kisspeptin neurons impinge onto nitric oxide-synthesizing neurons in the ventromedial hypothalamus. Our data establish kisspeptin neurons as a central regulatory hub orchestrating sexual behavior in the female mouse brain.


Asunto(s)
Kisspeptinas/metabolismo , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Masculino , Preferencia en el Apareamiento Animal , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Odorantes , Postura , Núcleo Hipotalámico Ventromedial/fisiología
15.
Psychoneuroendocrinology ; 86: 187-195, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28972892

RESUMEN

Various previous studies have reported that brains of people diagnosed with gender dysphoria (GD) show sex-atypical features. In addition, recent functional magnetic resonance imaging studies found that several brain resting-state networks (RSNs) in adults with GD show functional connectivity (FC) patterns that are not sex-atypical, but specific for GD. In the current study we examined whether FC patterns are also altered in prepubertal children and adolescents with GD in comparison with non-gender dysphoric peers. We investigated FC patterns within RSNs that were previously examined in adults: visual networks (VNs), sensorimotor networks (SMNs), default mode network (DMN) and salience network. Thirty-one children (18 birth assigned males; 13 birth assigned females) and 40 adolescents with GD (19 birth assigned males or transgirls; 21 birth assigned females or transboys), and 39 cisgender children (21 boys; 18 girls) and 41 cisgender adolescents (20 boys; 21 girls) participated. We used independent component analysis to obtain the network maps of interest and compared these across groups. Within one of the three VNs (VN-I), adolescent transgirls showed stronger FC in the right cerebellum compared with all other adolescent groups. Sex differences in FC between the cisgender adolescent groups were observed in the right supplementary motor area within one of the two SMNs (SMN-II; girls>boys) and the right posterior cingulate gyrus within the posterior DMN (boys>girls). Within these networks adolescent transgirls showed FC patterns similar to their experienced gender (female). Also adolescent transboys showed a FC pattern similar to their experienced gender (male), but within the SMN-II only. The prepubertal children did not show any group differences in FC, suggesting that these emerge with aging and during puberty. Our findings provide evidence for the existence of both GD-specific and sex-atypical FC patterns in adolescents with GD.


Asunto(s)
Disforia de Género/etiología , Disforia de Género/patología , Adolescente , Encéfalo/patología , Mapeo Encefálico/métodos , Niño , Preescolar , Conectoma/métodos , Estudios Transversales , Femenino , Disforia de Género/psicología , Giro del Cíngulo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Potenciales de la Membrana/fisiología , Red Nerviosa/fisiopatología , Pruebas Neuropsicológicas , Caracteres Sexuales , Maduración Sexual/fisiología
17.
Biol Sex Differ ; 8: 11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28413602

RESUMEN

BACKGROUND: Studies investigating the influence of perinatal hormone exposure on sexually differentiated traits would greatly benefit from biomarkers of these early hormone actions. Click-evoked otoacoustic emissions show sex differences that are thought to reflect differences in early androgen exposure. Women with complete androgen insensitivity syndrome (CAIS), who lack androgen action in the presence of XY-chromosomes, enabled us to study the effect of complete androgen inaction. The main goal was to investigate a possible link between click-evoked otoacoustic emissions and effective androgen exposure and, thus, whether this can be used as a biomarker. In addition, we aimed to replicate the only previous 2nd vs 4th digit-ratio study in women with CAIS, because despite the widely expressed criticisms of the validity of this measure as a biomarker for prenatal androgen exposure, it still is used for this purpose. METHODS: Click-evoked otoacoustic emissions and digit ratios from women with CAIS were compared to those from control men and women. RESULTS: The typical sex differences in click-evoked otoacoustic emissions and digit ratios were replicated in the control groups. Women with CAIS showed a tendency towards feminine, i.e., larger, click-evoked otoacoustic emission amplitudes in the right ear, and a significant female-typical, i.e., larger, digit ratio in the right hand. Although these results are consistent with androgen-dependent development of male-typical click-evoked otoacoustic emission amplitude and 2nd to 4th digit ratios, the within-group variability of these two measures was not reduced in women with CAIS compared with control women. CONCLUSIONS: In line with previous studies, our findings in CAIS women suggest that additional, non-androgenic, factors mediate male-typical sexual differentiation of digit ratios and click-evoked otoacoustic emissions. Consequently, use of these measures in adults as retrospective markers of early androgen exposure is not recommended.


Asunto(s)
Dedos/anatomía & histología , Emisiones Otoacústicas Espontáneas , Adulto , Síndrome de Resistencia Androgénica/fisiopatología , Andrógenos , Femenino , Humanos , Masculino , Intercambio Materno-Fetal , Embarazo , Caracteres Sexuales
18.
Horm Behav ; 90: 31-38, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27167606

RESUMEN

We previously showed that estradiol can have both defeminizing and feminizing effects on the developing mouse brain. Pre- and early postnatal estradiol defeminized the ability to show lordosis in adulthood, whereas prepubertal estradiol feminized this ability. Furthermore, we found that estradiol upregulates progesterone receptors (PR) during development, inducing both a male-and female-typical pattern of PR expression in the mouse hypothalamus. In the present study, we took advantage of a newly developed PR antagonist (ZK 137316) to determine whether PR contributes to either male- or female-typical sexual differentiation. Thus groups of male and female C57Bl/6j mice were treated with ZK 137316 or OIL as control: males were treated neonatally (P0-P10), during the critical period for male sexual differentiation, and females were treated prepubertally (P15-P25), during the critical period for female sexual differentiation. In adulthood, mice were tested for sexual behavior. In males, some minor effects of neonatal ZK treatment on sexual behavior were observed: latencies to the first mount, intromission and ejaculation were decreased in neonatally ZK treated males; however, this effect disappeared by the second mating test. By contrast, female mice treated with ZK during the prepubertal period showed significantly less lordosis than OIL-treated females. Mate preferences were not affected in either males or females treated with ZK during development. Taken together, these results suggest a role for PR and thus perhaps progesterone in the development of lordosis behavior in female mice. By contrast, no obvious role for PR can be discerned in the development of male sexual behavior.


Asunto(s)
Receptores de Progesterona/fisiología , Diferenciación Sexual/genética , Conducta Sexual Animal/fisiología , Animales , Estradiol/metabolismo , Estradiol/farmacología , Femenino , Feminización , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Progesterona/metabolismo , Progesterona/farmacología , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Receptores de Progesterona/antagonistas & inhibidores , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Diferenciación Sexual/efectos de los fármacos , Diferenciación Sexual/fisiología , Conducta Sexual Animal/efectos de los fármacos , Esteroides/farmacología
20.
J Neurochem ; 138(3): 457-68, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27216894

RESUMEN

Odors processed by the main and accessory olfactory bulbs (MOB, AOB) are important for sexual behavior. Interestingly, both structures continue to receive new neurons during adulthood. A role for olfactory neurogenesis in sexual behavior in female mice has recently been shown and gonadal hormones such as estradiol can modulate adult neurogenesis. Therefore, we wanted to determine the role of estradiol in learning the odors of sexual partners and in the adult neurogenesis of female aromatase knockout mice (ArKO), unable to produce estradiol. Female wild-type (WT) and ArKO mice were exposed to male odors during 7 days, and olfactory preferences, cell proliferation, cell survival and functional involvement of newborn neurons were analyzed, using BrdU injections, in combination with a marker of cell activation (Zif268) and neuronal fate (doublecortin, NeuN). Behavioral tasks indicated that both WT and ArKO females were able to discriminate between the odors of two different males, but ArKO mice failed to learn the familiar male odor. Proliferation of newborn cells was reduced in ArKO mice only in the dentate gyrus of the hippocampus. Olfactory exposure decreased cell survival in the AOB in WT females, suggesting a role for estradiol in a structure involved in sexual behavior. Finally, newborn neurons do not seem to be functionally involved in the AOB of ArKO mice compared with WT, when females were exposed to the odor of a familiar male, suggesting that estradiol-induced neurogenesis in the AOB is required for the learning of the male odor in female mice. Aromatase knockout mice (ArKO) presented deficits in olfactory preferences without affecting their olfactory discrimination abilities, and showed no functional involvement of newborn neurons in the accessory olfactory bulb (AOB) in response to the odor of a familiar male. These results suggest that estradiol-induced neurogenesis in the female AOB is required for the learning of the male odor.


Asunto(s)
Estradiol/farmacología , Aprendizaje/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Animales , Femenino , Masculino , Ratones Noqueados , Neurogénesis/fisiología , Odorantes , Bulbo Olfatorio/citología , Ovariectomía/métodos , Caracteres Sexuales , Olfato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA