Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 8(4): e0013223, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37338211

RESUMEN

Wastewater-based epidemiology (WBE) emerged during the coronavirus disease 2019 (COVID-19) pandemic as a scalable and broadly applicable method for community-level monitoring of infectious disease burden. The lack of high-resolution fecal shedding data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) limits our ability to link WBE measurements to disease burden. In this study, we present longitudinal, quantitative fecal shedding data for SARS-CoV-2 RNA, as well as for the commonly used fecal indicators pepper mild mottle virus (PMMoV) RNA and crAss-like phage (crAssphage) DNA. The shedding trajectories from 48 SARS-CoV-2-infected individuals suggest a highly individualized, dynamic course of SARS-CoV-2 RNA fecal shedding. Of the individuals that provided at least three stool samples spanning more than 14 days, 77% had one or more samples that tested positive for SARS-CoV-2 RNA. We detected PMMoV RNA in at least one sample from all individuals and in 96% (352/367) of samples overall. CrAssphage DNA was detected in at least one sample from 80% (38/48) of individuals and was detected in 48% (179/371) of all samples. The geometric mean concentrations of PMMoV and crAssphage in stool across all individuals were 8.7 × 104 and 1.4 × 104 gene copies/milligram-dry weight, respectively, and crAssphage shedding was more consistent for individuals than PMMoV shedding. These results provide us with a missing link needed to connect laboratory WBE results with mechanistic models, and this will aid in more accurate estimates of COVID-19 burden in sewersheds. Additionally, the PMMoV and crAssphage data are critical for evaluating their utility as fecal strength normalizing measures and for source-tracking applications. IMPORTANCE This research represents a critical step in the advancement of wastewater monitoring for public health. To date, mechanistic materials balance modeling of wastewater-based epidemiology has relied on SARS-CoV-2 fecal shedding estimates from small-scale clinical reports or meta-analyses of research using a wide range of analytical methodologies. Additionally, previous SARS-CoV-2 fecal shedding data have not contained sufficient methodological information for building accurate materials balance models. Like SARS-CoV-2, fecal shedding of PMMoV and crAssphage has been understudied to date. The data presented here provide externally valid and longitudinal fecal shedding data for SARS-CoV-2, PMMoV, and crAssphage which can be directly applied to WBE models and ultimately increase the utility of WBE.


Asunto(s)
COVID-19 , Tobamovirus , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Tobamovirus/genética
2.
PLoS Comput Biol ; 18(12): e1010748, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469517

RESUMEN

Randomized controlled trials (RCTs) evaluate hypotheses in specific contexts and are often considered the gold standard of evidence for infectious disease interventions, but their results cannot immediately generalize to other contexts (e.g., different populations, interventions, or disease burdens). Mechanistic models are one approach to generalizing findings between contexts, but infectious disease transmission models (IDTMs) are not immediately suited for analyzing RCTs, since they often rely on time-series surveillance data. We developed an IDTM framework to explain relative risk outcomes of an infectious disease RCT and applied it to a water, sanitation, and hygiene (WASH) RCT. This model can generalize the RCT results to other contexts and conditions. We developed this compartmental IDTM framework to account for key WASH RCT factors: i) transmission across multiple environmental pathways, ii) multiple interventions applied individually and in combination, iii) adherence to interventions or preexisting conditions, and iv) the impact of individuals not enrolled in the study. We employed a hybrid sampling and estimation framework to obtain posterior estimates of mechanistic parameter sets consistent with empirical outcomes. We illustrated our model using WASH Benefits Bangladesh RCT data (n = 17,187). Our model reproduced reported diarrheal prevalence in this RCT. The baseline estimate of the basic reproduction number [Formula: see text] for the control arm (1.10, 95% CrI: 1.07, 1.16) corresponded to an endemic prevalence of 9.5% (95% CrI: 7.4, 13.7%) in the absence of interventions or preexisting WASH conditions. No single pathway was likely able to sustain transmission: pathway-specific [Formula: see text] for water, fomites, and all other pathways were 0.42 (95% CrI: 0.03, 0.97), 0.20 (95% CrI: 0.02, 0.59), and 0.48 (95% CrI: 0.02, 0.94), respectively. An IDTM approach to evaluating RCTs can complement RCT analysis by providing a rigorous framework for generating data-driven hypotheses that explain trial findings, particularly unexpected null results, opening up existing data to deeper epidemiological understanding.


Asunto(s)
Enfermedades Transmisibles , Saneamiento , Humanos , Agua , Ensayos Clínicos Controlados Aleatorios como Asunto , Higiene , Enfermedades Transmisibles/epidemiología
3.
BMC Med ; 20(1): 387, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209074

RESUMEN

BACKGROUND: Varicella zoster virus (VZV) is one of the eight known human herpesviruses. Initial VZV infection results in chickenpox, while viral reactivation following a period of latency manifests as shingles. Separate vaccines exist to protect against both initial infection and subsequent reactivation. Controversy regarding chickenpox vaccination is contentious with most countries not including the vaccine in their childhood immunization schedule due to the hypothesized negative impact on immune-boosting, where VZV reactivation is suppressed through exogenous boosting of VZV antibodies from exposure to natural chickenpox infections. METHODS: Population-level chickenpox and shingles notifications from Thailand, a country that does not vaccinate against either disease, were previously fitted with mathematical models to estimate rates of VZV transmission and reactivation. Here, multiple chickenpox and shingles vaccination scenarios were simulated and compared to a model lacking any vaccination to analyze the long-term impacts of VZV vaccination. RESULTS: As expected, simulations suggested that an introduction of the chickenpox vaccine, at any coverage level, would reduce chickenpox incidence. However, chickenpox vaccine coverage levels above 35% would increase shingles incidence under realistic estimates of shingles coverage with the current length of protective immunity from the vaccine. A trade-off between chickenpox and shingles vaccination coverage was discovered, where mid-level chickenpox coverage levels were identified as the optimal target to minimize total zoster burden. Only in scenarios where shingles vaccine provided lifelong immunity or coverage exceeded current levels could large reductions in both chickenpox and shingles be achieved. CONCLUSIONS: The complicated nature of VZV makes it impossible to select a single vaccination scenario as universal policy. Strategies focused on reducing both chickenpox and shingles incidence, but prioritizing the latter should maximize efforts towards shingles vaccination, while slowly incorporating chickenpox vaccination. Alternatively, countries may wish to minimize VZV complications of both chickenpox and shingles, which would lead to maximizing vaccine coverage levels across both diseases. Balancing the consequences of vaccination to overall health impacts, including understanding the impact of an altered mean age of infection for both chickenpox and shingles, would need to be considered prior to any vaccine introduction.


Asunto(s)
Varicela , Vacuna contra el Herpes Zóster , Herpes Zóster , Varicela/epidemiología , Varicela/prevención & control , Vacuna contra la Varicela , Niño , Herpes Zóster/epidemiología , Herpes Zóster/prevención & control , Herpesvirus Humano 3 , Humanos , Vacunación , Vacunas Atenuadas
4.
Environ Sci (Camb) ; 8(4): 757-770, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35433013

RESUMEN

Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.

5.
Am J Epidemiol ; 190(9): 1814-1820, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33733653

RESUMEN

Varicella zoster virus (VZV) is a herpesvirus that causes chickenpox and shingles. The biological mechanisms underpinning the multidecadal latency of VZV in the body and subsequent viral reactivation-which occurs in approximately 30% of individuals-are largely unknown. Because chickenpox and shingles are endemic worldwide, understanding the relationship between VZV transmission and reactivation is important for informing disease treatment and control. While chickenpox is a vaccine-preventable childhood disease with a rich legacy of research, shingles is not a notifiable disease in most countries. To date, population-level studies of shingles have had to rely on small-scale hospital or community-level data sets. Here, we examined chickenpox and shingles notifications from Thailand and found strong seasonal incidence in both diseases, with a 3-month lag between peak chickenpox transmission season and peak shingles reactivation. We tested and fitted 14 mathematical models examining the biological drivers of chickenpox and shingles over an 8-year period to estimate rates of VZV transmission, reactivation, and immunity-boosting, wherein reexposure to VZV boosts VZV-specific immunity to reinforce protection against shingles. The models suggested that the seasonal cycles of chickenpox and shingles have different underlying mechanisms, with ambient levels of ultraviolet radiation being correlated with shingles reactivation.


Asunto(s)
Herpesvirus Humano 3 , Estaciones del Año , Infección por el Virus de la Varicela-Zóster/transmisión , Varicela/epidemiología , Varicela/transmisión , Brotes de Enfermedades/estadística & datos numéricos , Herpes Zóster/epidemiología , Herpes Zóster/transmisión , Humanos , Reinfección/etiología , Reinfección/virología , Tailandia/epidemiología , Infección por el Virus de la Varicela-Zóster/epidemiología
7.
Nat Ecol Evol ; 3(12): 1697-1704, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740844

RESUMEN

Vaccines that autonomously transfer among individuals have been proposed as a strategy to control infectious diseases within inaccessible wildlife populations. However, rates of vaccine spread and epidemiological efficacy in real-world systems remain elusive. Here, we investigate whether topical vaccines that transfer among individuals through social contacts can control vampire bat rabies-a medically and economically important zoonosis in Latin America. Field experiments in three Peruvian bat colonies, which used fluorescent biomarkers as a proxy for the bat-to-bat transfer and ingestion of an oral vaccine, revealed that vaccine transfer would increase population-level immunity up to 2.6 times beyond the same effort using conventional, non-spreadable vaccines. Mathematical models showed that observed levels of vaccine transfer would reduce the probability, size and duration of rabies outbreaks, even at low but realistically achievable levels of vaccine application. Models further predicted that existing vaccines provide substantial advantages over culling bats-the policy currently implemented in North, Central and South America. Linking field studies with biomarkers to mathematical models can inform how spreadable vaccines may combat pathogens of health and conservation concern before costly investments in vaccine design and testing.


Asunto(s)
Quirópteros , Rabia , Vacunas , Animales , Biomarcadores , Humanos
8.
Proc Natl Acad Sci U S A ; 113(24): 6689-94, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27247405

RESUMEN

Public health surveillance systems are important for tracking disease dynamics. In recent years, social and real-time digital data sources have provided new means of studying disease transmission. Such affordable and accessible data have the potential to offer new insights into disease epidemiology at national and international scales. We used the extensive information repository Google Trends to examine the digital epidemiology of a common childhood disease, chicken pox, caused by varicella zoster virus (VZV), over an 11-y period. We (i) report robust seasonal information-seeking behavior for chicken pox using Google data from 36 countries, (ii) validate Google data using clinical chicken pox cases, (iii) demonstrate that Google data can be used to identify recurrent seasonal outbreaks and forecast their magnitude and seasonal timing, and (iv) reveal that VZV immunization significantly dampened seasonal cycles in information-seeking behavior. Our findings provide strong evidence that VZV transmission is seasonal and that seasonal peaks show remarkable latitudinal variation. We attribute the dampened seasonal cycles in chicken pox information-seeking behavior to VZV vaccine-induced reduction of seasonal transmission. These data and the methodological approaches provide a way to track the global burden of childhood disease and illustrate population-level effects of immunization. The global latitudinal patterns in outbreak seasonality could direct future studies of environmental and physiological drivers of disease transmission.


Asunto(s)
Varicela , Bases de Datos Factuales , Herpesvirus Humano 3 , Inmunización , Modelos Biológicos , Estaciones del Año , Vacunas Virales/administración & dosificación , Adolescente , Varicela/epidemiología , Varicela/prevención & control , Varicela/transmisión , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
9.
Proc Biol Sci ; 281(1783): 20132438, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24695423

RESUMEN

More than a century of ecological studies have demonstrated the importance of demography in shaping spatial and temporal variation in population dynamics. Surprisingly, the impact of seasonal recruitment on infectious disease systems has received much less attention. Here, we present data encompassing 78 years of monthly natality in the USA, and reveal pronounced seasonality in birth rates, with geographical and temporal variation in both the peak birth timing and amplitude. The timing of annual birth pulses followed a latitudinal gradient, with northern states exhibiting spring/summer peaks and southern states exhibiting autumn peaks, a pattern we also observed throughout the Northern Hemisphere. Additionally, the amplitude of United States birth seasonality was more than twofold greater in southern states versus those in the north. Next, we examined the dynamical impact of birth seasonality on childhood disease incidence, using a mechanistic model of measles. Birth seasonality was found to have the potential to alter the magnitude and periodicity of epidemics, with the effect dependent on both birth peak timing and amplitude. In a simulation study, we fitted an susceptible-exposed-infected-recovered model to simulated data, and demonstrated that ignoring birth seasonality can bias the estimation of critical epidemiological parameters. Finally, we carried out statistical inference using historical measles incidence data from New York City. Our analyses did not identify the predicted systematic biases in parameter estimates. This may be owing to the well-known frequency-locking between measles epidemics and seasonal transmission rates, or may arise from substantial uncertainty in multiple model parameters and estimation stochasticity.


Asunto(s)
Tasa de Natalidad , Epidemias , Sarampión/epidemiología , Estaciones del Año , Simulación por Computador , Demografía , Geografía , Humanos , Incidencia , Sarampión/transmisión , Modelos Teóricos , Ciudad de Nueva York/epidemiología , Periodicidad , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...