Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 20: 287-297, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33511243

RESUMEN

A clinical trial using adeno-associated virus serotype 8 (AAV8)-human uridine diphosphate glucuronosyltransferase 1A1 (hUGT1A1) to treat inherited severe unconjugated hyperbilirubinemia (Crigler-Najjar syndrome) is ongoing, but preclinical data suggest that long-term efficacy in children is impaired due to loss of transgene expression upon hepatocyte proliferation in a growing liver. This study aims to determine at what age long-term efficacy can be obtained in the relevant animal model and whether immune modulation allows re-treatment using the same AAV vector. Neonatal, suckling, and juvenile Ugt1a1-deficient rats received a clinically relevant dose of AAV8-hUGT1A1, and serum bilirubin levels and anti-AAV8 neutralizing antibodies (NAbs) in serum were monitored. The possibility of preventing the immune response toward the vector was investigated using a rapamycin-based regimen with daily intraperitoneal (i.p.) injections starting 2 days before and ending 21 days after vector administration. In rats treated at postnatal day 1 (P1) or P14, the correction was (partially) lost after 12 weeks, whereas the correction was stable in rats injected at P28. Combining initial vector administration with the immune-suppressive regimen prevented induction of NAbs in female rats, allowing at least partially effective re-administration. Induction of NAbs upon re-injection could not be prevented, suggesting that this strategy will be ineffective in patients with low levels of preexisting anti-AAV NAbs.

2.
Mol Ther Methods Clin Dev ; 18: 250-258, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32637454

RESUMEN

Potency assessment of clinical-grade vector lots is crucial to support adeno-associated virus (AAV) vector release and is required for future marketing authorization. We have developed and validated a cell-based, quantitative potency assay that detects both transgenic expression and activity of an AAV8-hUGT1A1 vector, which is currently under clinical evaluation for the treatment of Crigler-Najjar syndrome. Potency of AAV8-hUGT1A1 was evaluated in vitro. After transduction of human hepatoma 7 (Huh7) cells, transgene-positive cells were quantified using flow cytometry and transgenic activity by a bilirubin conjugation assay. The in vitro potency of various AAV8-hUGT1A1 batches was compared with their potency in vivo. After AAV8-hUGT1A1 transduction, quantification of UGT1A1-expressing cells shows a linear dose-response relation (R2 = 0.98) with adequate intra-assay and inter-day reproducibility (coefficient of variation [CV] = 11.0% and 22.6%, respectively). In accordance, bilirubin conjugation shows a linear dose-response relation (R2 = 0.99) with adequate intra- and inter-day reproducibility in the low dose range (CV = 15.7% and 19.7%, respectively). Both in vitro potency assays reliably translate to in vivo efficacy of AAV8-hUGT1A1 vector lots. The described cell-based potency assay for AAV8-hUGT1A1 adequately determines transgenic UGT1A1 expression and activity, which is consistent with in vivo efficacy. This novel approach is suited for the determination of vector lot potency to support clinical-grade vector release.

3.
J Hepatol ; 71(1): 153-162, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30935993

RESUMEN

BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis type 3 (PFIC3), for which there are limited therapeutic options, often leads to end-stage liver disease before adulthood due to impaired ABCB4-dependent phospholipid transport to bile. Using adeno-associated virus serotype 8 (AAV8)-mediated gene therapy, we aimed to restore the phospholipid content in bile to levels that prevent liver damage, thereby enabling stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3. METHODS: Ten-week-old Abcb4-/- mice received a single dose of AAV8-hABCB4 (n = 10) or AAV8-GFP (n = 7) under control of a liver specific promoter via tail vein injection. Animals were sacrificed either 10 or 26 weeks after vector administration to assess transgene persistence, after being challenged with a 0.1% cholate diet for 2 weeks. Periodic evaluation of plasma cholestatic markers was performed and bile duct cannulation enabled analysis of biliary phospholipids. Liver fibrosis and the Ki67 proliferation index were assessed by immunohistochemistry. RESULTS: Stable transgene expression was achieved in all animals that received AAV8-hABCB4 up to 26 weeks after administration. AAV8-hABCB4 expression restored biliary phospholipid excretion, increasing the phospholipid and cholesterol content in bile to levels that ameliorate liver damage. This resulted in normalization of the plasma cholestatic markers, alkaline phosphatase and bilirubin. In addition, AAV8-hABCB4 prevented progressive liver fibrosis and reduced hepatocyte proliferation for the duration of the study. CONCLUSION: Liver-directed gene therapy provides stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3. Translational studies that verify the clinical feasibility of this approach are warranted. LAY SUMMARY: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe genetic liver disease that results from impaired transport of lipids to bile, which makes the bile toxic to liver cells. Because therapeutic options are currently limited, this study aims to evaluate gene therapy to correct the underlying genetic defect in a mouse model of this disease. By introducing a functional copy of the missing gene in liver cells of mice, we were able to restore lipid transport to bile and strongly reduce damage to the liver. The proliferation of liver cells was also reduced, which contributes to long-term correction of the phenotype. Further studies are required to evaluate whether this approach can be applied to patients with PFIC3.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Bilis/metabolismo , Colestasis Intrahepática , Terapia Genética/métodos , Cirrosis Hepática/metabolismo , Fosfolípidos/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Colestasis Intrahepática/genética , Colestasis Intrahepática/terapia , Dependovirus , Ratones , Ratones Transgénicos , Vías Secretoras/fisiología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...