RESUMEN
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies.
RESUMEN
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
RESUMEN
Doxorubicin (DOX) is a chemotherapeutic agent commonly used for the treatment of solid tumors. However, the cardiotoxicity associated with its prolonged use prevents further adherence and therapeutic efficacy. By encapsulating DOX within a PEGylated liposome, Doxil® considerably decreased DOX cardiotoxicity. By using thermally sensitive lysolipids in its bilayer composition, ThermoDox® implemented a heat-induced controlled release of DOX. However, both ThermoDox® and Doxil® rely on their passive retention in tumors, depending on their half-lives in blood. Moreover, ThermoDox® ordinarily depend on invasive radiofrequency-generating metallic probes for local heating. In this study, we prepare, characterize, and evaluate the antitumoral capabilities of DOX-loaded folate-targeted PEGylated magnetoliposomes (DFPML). Unlike ThermoDox®, DOX delivery via DFPML is mediated by the heat released through dynamic hysteresis losses from magnetothermal converting systems composed by MnFe2O4 nanoparticles (NPs) under AC magnetic field excitation-a non-invasive technique designated magnetic hyperthermia (MHT). Moreover, DFPML dismisses the use of thermally sensitive lysolipids, allowing the use of simpler and cheaper alternative lipids. MnFe2O4 NPs and DFPML are fully characterized in terms of their size, morphology, polydispersion, magnetic, and magnetothermal properties. About 50% of the DOX load is released from DFPML after 30 min under MHT conditions. Being folate-targeted, in vitro DFPML antitumoral activity is higher (IC50 ≈ 1 µg/ml) for folate receptor-overexpressing B16F10 murine melanoma cells, compared to MCF7 human breast adenocarcinoma cells (IC50 ≈ 4 µg/ml). Taken together, our results indicate that DFPML are strong candidates for folate-targeted anticancer therapies based on DOX controlled release.
RESUMEN
Once administered in an organism, the physiological parameters of magnetic nanoparticles (MNPs) must be addressed, as well as their possible interactions and retention and elimination profiles. Alternating current biosusceptometry (ACB) is a biomagnetic detection system used to detect and quantify MNPs. The aims of this study were to evaluate the biodistribution and clearance of MNPs profiles through long-time in vivo analysis and determine the elimination time carried out by the association between the ACB system and MnFe2O4 nanoparticles. The liver, lung, spleen, kidneys, and heart and a blood sample were collected for biodistribution analysis and, for elimination analysis, and over 60 days. During the period analyzed, the animal's feces were also collectedd. It was possible to notice a higher uptake by the liver and the spleen due to their characteristics of retention and uptake. In 60 days, we observed an absence of MNPs in the spleen and a significant decay in the liver. We also determined the MNPs' half-life through the liver and the spleen elimination. The data indicated a concentration decay profile over the 60 days, which suggests that, in addition to elimination via feces, there is an endogenous mechanism of metabolization or possible agglomeration of MNPs, resulting in loss of ACB signal intensity.
RESUMEN
Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat-based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle-imaging technology that provides real-time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof-of-principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias , Diagnóstico por Imagen/métodos , Humanos , Hipertermia Inducida/métodos , Fenómenos Magnéticos , Nanopartículas de Magnetita/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapiaRESUMEN
Aim: This paper aims to investigate a doxorubicin (DOX) chronic kidney disease rat model using magnetic nanoparticles (MNPs) associated with the alternate current biosusceptometry (ACB) to analyze its different perfusion profiles in both healthy and DOX-injured kidneys. Materials & methods: We used the ACB to detect the MNP kidney perfusion in vivo. Furthermore, we performed biochemical and histological analyses, which sustained results obtained from the ACB system. We also studied the MNP biodistribution. Results: We found that DOX kidney injury alters the MNPs' kidney perfusion. These changes became more intense as the disease progressed. Moreover, DOX has an important effect on MNP biodistribution as the disease evolved. Conclusion: This study provides new applications of MNPs in nephrology, instrumentation, pharmacology, physiology and nanomedicine.
Asunto(s)
Doxorrubicina/efectos adversos , Riñón/efectos de los fármacos , Nanopartículas de Magnetita , Animales , Riñón/fisiopatología , Ratas , Distribución TisularRESUMEN
Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.
Asunto(s)
Portadores de Fármacos/química , Membrana Eritrocítica/química , Compuestos Férricos/química , Colorantes Fluorescentes/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Imanes/química , Compuestos de Manganeso/química , Terapia Fototérmica/métodos , Animales , Carcinoma de Ehrlich/tratamiento farmacológico , Modelos Animales de Enfermedad , Portadores de Fármacos/farmacocinética , Femenino , Compuestos Férricos/farmacocinética , Colorantes Fluorescentes/farmacocinética , Hipertermia Inducida/métodos , Compuestos de Manganeso/farmacocinética , Ratones , Tamaño de la Partícula , Nanomedicina Teranóstica/métodos , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacosRESUMEN
Magnetic nanoparticle hyperthermia (MNH) is a promising nanotechnology-based cancer thermal therapy that has been approved for clinical use, together with radiation therapy, for treating brain tumors. Almost ten years after approval, few new clinical applications had appeared, perhaps because it cannot benefit from the gold standard noninvasive MRI thermometry technique, since static magnetic fields inhibit heat generation. This might limit its clinical use, in particular as a single therapeutic modality. In this article, we review the in vivo MNH preclinical studies, discussing results of the last two decades with emphasis on safety as a clinical criteria, the need for low-field nano-heaters and noninvasive thermal dosimetry, and the state of the art of computational modeling for treatment planning using MNH. Limitations to more effective clinical use are discussed, together with suggestions for future directions, such as the development of ultrasound-based, computed tomography-based or magnetic nanoparticle-based thermometry to achieve greater impact on clinical translation of MNH.
Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Termometría , Simulación por Computador , Humanos , Hipertermia , Nanopartículas de Magnetita/uso terapéuticoRESUMEN
PURPOSE: Noninvasive thermometry during magnetic nanoparticle hyperthermia (MNH) remains a challenge. Our pilot study proposes a methodology to determine the noninvasive intratumoral thermal dose during MNH in the subcutaneous tumor model. METHODS: Two groups of Ehrlich bearing-mice with solid and subcutaneous carcinoma, a control group (n = 6), and a MNH treated group (n = 4) were investigated. Histopathology was used to evaluate the percentage of non-viable lesions in the tumor. MNH was performed at 301 kHz and 17.5 kA.m-1, using a multifunctional nanocarrier. Surface temperature measurements were obtained using an infrared camera, where an ROI with 750 pixels was used for comparison with computer simulations. Realistic simulations of the bioheat equation were obtained by combining histopathology intratumoral lesion information and surface temperature agreement of at least 50% of the pixel's temperature data calculated and measured at the surface. RESULTS: One animal of the MNH group showed tumor recurrence, while two others showed complete tumor remission (monitored for 585 days). Sensitivity analysis of the simulation parameters indicated low tumor blood perfusion. Numerical simulations indicated, for the animals with complete remission, an irreversible tissue injury of 91 ± 5% and 100%, while the one with recurrence had a lower value, 56 ± 7%. The computer simulations also revealed the in vivo heat efficiency of the nanocarrier. CONCLUSION: A new methodology for determining noninvasively the three-dimensional intratumoral thermal dose during MNH was developed. The method demonstrates the potential for predicting the long-term preclinical outcome of animals treated with MNH.
Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Animales , Simulación por Computador , Hipertermia , Ratones , Recurrencia Local de Neoplasia , Proyectos Piloto , TemperaturaAsunto(s)
Nanomedicina , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/terapiaRESUMEN
IR-780 iodide is a fluorescent dye with optical properties in the near-infrared region that has applications in tumor detection and photothermal/photodynamic therapy. This multifunctional effect led to the development of theranostic nanoparticles with both IR-780 and chemotherapeutic drugs such as docetaxel, doxorubicin, and lonidamine. In this work, we developed two albumin-based nanoparticles containing near-infrared IR-780 iodide multifunctional dyes, one of them possessing a magnetic core. Molecular docking with AutoDock Vina studies showed that IR-780 binds to bovine serum albumin (BSA) with greater stability at a higher temperature, allowing the protein binding pocket to better fit this dye. The theoretical analysis corroborates the experimental protocols, where an enhancement of IR-780 was found coupled to BSA at 60 °C, even 30 days after preparation, in comparison to 30 °C. In vitro assays monitoring the viability of Ehrlich ascites carcinoma cells revealed the importance of the inorganic magnetic core on the nanocarrier photothermal-cytotoxic effect. Fluorescence molecular tomography measurements of Ehrlich tumor-bearing Swiss mice revealed the biodistribution of the nanocarriers, with marked accumulation in the tumor tissue (≈3% ID). The histopathological analysis demonstrated strong increase in tumoral necrosis areas after 24 and 72 h after treatment, indicating tumor regression. Tumor regression analysis of nonirradiated animals indicate a IR-780 dose-dependent antitumoral effect with survival rates higher than 70% (animals monitored up to 600 days). Furthermore, an in vivo photothermal therapy procedure was performed and tumor regression was also verified. These results show a novel insight for the biomedical application of IR-780-albumin-based nanocarriers, namely cancer therapy, not only by photoinduced therapy but also by a nonirradiation mechanism. Safety studies (acute oral toxicity, cardiovascular evaluation, and histopathological analysis) suggest potential for clinical translation.
Asunto(s)
Hipertermia Inducida , Animales , Línea Celular Tumoral , Indoles , Ratones , Simulación del Acoplamiento Molecular , Fototerapia , Distribución TisularRESUMEN
We have showed that surface layer can determine cardiac effects of the magnetic nanoparticles (MNPs). Considering the high binding capacity of albumin and low side-effects, the aim of this study was to evaluate the influence of albumin coating on the cardiovascular effects of two manganese ferrite-based MNPs: citrate-coated and bare MNPs. Isolated rat hearts were perfused with citrate-coated magnetic nanoparticles (CiMNPs), citrate albumin-coated magnetic nanoparticles (CiAlbMNPs), bare magnetic nanoparticles (BaMNPs), and albumin-coated magnetic nanoparticles (AlbMNPs). CiMNPs induce a transient decrease in the left ventricular end-systolic pressure, +dP/dt and -dP/dt. These effects were not worsened by albumin coating. BaMNPs significantly increased the left ventricular end-diastolic pressure and perfusion pressure and decreased the +dP/dt and -dP/dt. These effects were completely absent in hearts perfused with AlbMNPs. None of the MNPs changed heart rate or arterial blood pressure in conscious rats. Magnetic signals in isolated hearts perfused with BaMNPs were significantly higher than AlbMNPs perfused hearts. However, the magnetic signal in heart tissue was similar when the MNPs were infused in conscious rats. These data indicate that albumin-coated can reduce cardiovascular effects of MNPs. These findings suggest a protective effect of albumin surface in MNPs, favoring its future therapeutic applications.
Asunto(s)
Albúminas/administración & dosificación , Compuestos Férricos/administración & dosificación , Corazón/efectos de los fármacos , Compuestos de Manganeso/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Albúminas/química , Animales , Presión Sanguínea , Compuestos Férricos/química , Corazón/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Compuestos de Manganeso/química , Nanopartículas del Metal/química , Ratas WistarRESUMEN
In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.
Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Nanopartículas de Magnetita , Procesamiento de Señales Asistido por Computador , Animales , Diagnóstico por Imagen/instrumentación , Diagnóstico por Imagen/métodos , Diseño de Equipo , Compuestos Férricos/farmacocinética , Masculino , Compuestos de Manganeso/farmacocinética , Tamaño de la Partícula , Ratas , Ratas Wistar , Distribución TisularRESUMEN
We developed a magnetic solid lipid nanoparticles formulation of paclitaxel (PTX-loaded MSLNs) via emulsification-diffusion method. The physicochemical characterization of PTX-loaded MSLNs was performed by AFM, DLS, determination of entrapment efficiency (EE) and drug loading (DL), DSC, VSM, and physical stability. The in vitro effect of temperature and pulsed magnetic hyperthermia on drug release were studied. PTX-loaded MSLNs had a particle diameter around 250â¯nm with a narrow size distribution, spherical morphology, EE of 67.3⯱â¯1.2% and a DL of 17.1⯱â¯0.4⯵g/mg. A decrease of the melting point of the lipid was observed following the preparation of the MSLNs. A threefold increase in the in vitro drug release rate was seen when temperature was raised from 25 to 43⯰C. The lipid coating of MPs confer a temperature-dependent drug release and magnetic hyperthermia was used to trigger controlled PTX release from MSLNs.
Asunto(s)
Hipertermia Inducida , Lípidos/química , Campos Magnéticos , Nanopartículas/análisis , Paclitaxel , Paclitaxel/química , Paclitaxel/farmacocinéticaRESUMEN
The use of central venous catheters (CVC) is highly associated with nosocomial blood infections and its use largely requires a systematic assessment of benefits and risks. Bacterial contamination of these tubes is frequent and may result in development of microbial consortia also known as biofilm. The woven nature of biofilm provides a practical defense against antimicrobial agents, facilitating bacterial dissemination through the patient's body and development of antimicrobial resistance. In this work, the authors describe the modification of CVC tubing by immobilizing Fe3O4-aminosilane core-shell nanoparticles functionalized with antimicrobial peptide clavanin A (clavA) as an antimicrobial prophylactic towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Its anti-biofilm-attachment characteristic relies in clavA natural activity to disrupt the bacterial lipidic membrane. The aminosilane shell prevents iron leaching, which is an important nutrient for bacterial growth. Fe3O4-clavA-modified CVCs showed to decrease Gram-negative bacteria attachment up to 90% when compared to control clean CVC. Additionally, when hyperthermal treatment is triggered for 5â¯min at 80⯰C in a tubing that already presents bacterial biofilm (CVC-BF), the viability of attached bacteria reduces up to 88%, providing an efficient solution to avoid changing catheter.
Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Proteínas Sanguíneas/farmacología , Óxido Ferrosoférrico/farmacología , Nanopartículas/química , Silanos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Sanguíneas/química , Escherichia coli/efectos de los fármacos , Óxido Ferrosoférrico/química , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Pseudomonas aeruginosa/efectos de los fármacos , Silanos/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de SuperficieRESUMEN
BACKGROUND: We introduce and demonstrate that the AC biosusceptometry (ACB) technique enables real-time monitoring of magnetic nanoparticles (MNPs) in the bloodstream. We present an ACB system as a simple, portable, versatile, non-invasive, and accessible tool to study pharmacokinetic parameters of MNPs, such as circulation time, in real time. We synthesized and monitored manganese doped iron oxide nanoparticles in the bloodstream of Wistar rats using two different injection protocols. Aiming towards a translational approach, we also simultaneously evaluated cardiovascular parameters, including mean arterial pressure, heart rate, and episodes of arrhythmia in order to secure the well-being of all animals. RESULTS: We found that serial injections increased the circulation time compared with single injections. Immediately after each injection, we observed a transitory drop in arterial pressure, a small drop in heart rate, and no episodes of arrhythmia. Although some cardiovascular effects were observed, they were transitory and easily recovered in both protocols. CONCLUSIONS: These results indicate that the ACB system may be a valuable tool for in vivo, real-time MNP monitoring that allows associations with other techniques, such as pulsatile arterial pressure and electrocardiogram recordings, helping ensuring the protocol safety, which is a fundamental step towards clinical applications.
Asunto(s)
Tiempo de Circulación Sanguínea , Compuestos Férricos/sangre , Nanopartículas de Magnetita/química , Magnetometría/métodos , Animales , Arritmias Cardíacas/inducido químicamente , Presión Sanguínea , Electrocardiografía , Compuestos Férricos/farmacocinética , Frecuencia Cardíaca , Magnetismo , Masculino , Tamaño de la Partícula , Ratas , Ratas WistarRESUMEN
Non-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration. This work reports an MNH study using a sarcoma 180 murine tumor containing 3.9 mg of intratumorally injected manganese-ferrite nanoparticles. MNH was performed at low field amplitude and non-uniform field configuration. Five 30 min in vivo magnetic hyperthermia experiments were performed, monitoring the surface temperature with a fiber optical sensor and thermal camera at distinct angles with respect to the animal's surface. The results indicate that temperature errors as large as [Formula: see text]C can occur if the experiment is not properly designed. A new IRT error model is found to explain the data. More importantly, we show how to precisely monitor temperature with IRT during hyperthermia, which could positively impact heat dosimetry and clinical planning.
Asunto(s)
Calor , Hipertermia Inducida/métodos , Rayos Infrarrojos , Imanes/química , Nanopartículas , Termografía , Animales , Compuestos Férricos/química , Masculino , Compuestos de Manganeso/química , Ratones , Neoplasias/terapia , TemperaturaRESUMEN
Modern medicine has been searching for new and more efficient strategies for diagnostics and therapeutics applications. Considering this, porphyrin molecules have received great interest for applications in photodiagnostics and phototherapies, even as magnetic nanoparticles for drug-delivery systems and magnetic-hyperthermia therapy. Aiming to obtain a multifunctional system, which combines diagnostics with therapeutic functions on the same platform, the present study employed UV/vis absorption and fluorescence spectroscopies to evaluate the interaction between meso-tetrakis(p-sulfonatofenyl)porphyrin (TPPS) and maghemite nanoparticles (γ-Fe2O3). These spectroscopic techniques allowed us to describe the dynamics of coupling porphyrins on nanoparticles and estimate the number of 21 porphyrins per nanoparticle. Also, the binding parameters, such as the association constants (Ka = 8.89 × 105 M-1) and bimolecular quenching rate constant (kq = 2.54 × 1014 M-1 s-1) were obtained. These results suggest a static quenching process where the electrostatic attraction plays an essential role. The work shows that spectroscopic techniques are powerful tools to evaluate the coupling of organic molecules and nanoparticles. Besides, the system studied provides a relevant background for potential applications in bionanotechnology and nanomedicine, such as (1) nanodrug delivery system, (2) photodiagnostics/theranostics, and/or (3) a combined action of photodynamic and hyperthermia therapies, working in a synergetic way.
Asunto(s)
Compuestos Férricos/química , Nanopartículas/química , Porfirinas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/efectos de la radiación , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Compuestos Férricos/efectos de la radiación , Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/efectos de la radiación , Luz , Nanopartículas/efectos de la radiación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Porfirinas/efectos de la radiación , Nanomedicina TeranósticaRESUMEN
We describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique. For quantification, we validated our results by comparing all of the data with electron spin resonance (ESR). The ACB had viable temporal resolution and accuracy to differentiate temporal parameters of liver accumulation, caused by vasculature extravasation and macrophages action. The biodistribution experiment showed different uptake profiles for different doses and injection protocols. Comparisons with the ESR system indicated a correlation index of 0.993. We present the ACB system as an accessible and versatile tool to monitor magnetic nanoparticles, allowing in vivo and real-time evaluations of distribution and quantitative assessments of particle concentrations.
Asunto(s)
Hígado/metabolismo , Magnetismo/métodos , Nanopartículas de Magnetita/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Masculino , Ratas Wistar , Distribución TisularRESUMEN
The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.