Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(14): 1299-1313.e5, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37295436

RESUMEN

Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas de Drosophila/fisiología , Actinas , Corazón , Miosinas , Morfogénesis , Drosophila melanogaster
2.
Bioinformatics ; 38(2): 594-596, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34390579

RESUMEN

SUMMARY: Our increasing ability to resolve fine details using light microscopy is matched by an increasing need to quantify images in order to detect and measure phenotypes. Despite their central role in cell biology, many image analysis tools require a financial investment, are released as proprietary software, or are implemented in languages not friendly for beginners, and thus are used as black boxes. To overcome these limitations, we have developed PyJAMAS, an open-source tool for image processing and analysis written in Python. PyJAMAS provides a variety of segmentation tools, including watershed and machine learning-based methods; takes advantage of Jupyter notebooks for the display and reproducibility of data analyses; and can be used through a cross-platform graphical user interface or as part of Python scripts via a comprehensive application programming interface. AVAILABILITY AND IMPLEMENTATION: PyJAMAS is open-source and available at https://bitbucket.org/rfg_lab/pyjamas. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microscopía , Programas Informáticos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador , Lenguaje
3.
Cells Dev ; 168: 203721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34271226

RESUMEN

Compartment boundaries prevent cell mixing during animal development. In the early Drosophila embryo, the mesectoderm is a group of glial precursors that separate ectoderm and mesoderm, forming the ventral midline. Mesectoderm cells undergo one round of oriented divisions during axis elongation and are eventually internalized 6 h later. Using spinning disk confocal microscopy and image analysis, we found that after dividing, mesectoderm cells reversed their planar polarity. The polarity factor Bazooka was redistributed to mesectoderm-mesectoderm cell interfaces, and the molecular motor non-muscle Myosin II and its upstream activator Rho-kinase (Rok) accumulated at mesectoderm-ectoderm (ME) interfaces, forming supracellular cables flanking the mesectoderm on either side of the tissue. Laser ablation revealed the presence of increased tension at ME cables, where Myosin was stabilized, as shown by fluorescence recovery after photobleaching. We used laser nanosurgery to reduce tension at the ME boundary, and we found that Myosin fluorescence decreased rapidly, suggesting a role for tension in ME boundary maintenance. Mathematical modelling predicted that increased tension at the ME boundary was necessary to prevent the premature establishment of contacts between the two ectodermal sheets on opposite sides of the mesectoderm, thus controlling the timing of mesectoderm internalization. We validated the model in vivo: Myosin inhibition disrupted the linearity of the ME boundary and resulted in early internalization of the mesectoderm. Our results suggest that the redistribution of Rok polarizes Myosin and Bazooka within the mesectoderm to establish tissue boundaries, and that ME boundaries control the timely internalization of the mesectoderm as embryos develop.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Miosina Tipo II , Miosinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...