Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 4): 119121, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734291

RESUMEN

Extensive utilization of pesticides and herbicides to boost agricultural production increased the environmental health risks, which can be mitigate with the aid of highly sensitive detection systems. In this study, an electrochemical sensor for monitoring the carcinogenic pesticides in the environmental samples has been developed based on sulfur-doped graphitic-carbon nitride-gold nanoparticles (SCN-AuNPs) nanohybrid. Thermal polycondensation of melamine with thiourea followed by solvent exfoliation via ultrasonication leads to SCN formation and electroless deposition of AuNPs on SCN leads to SCN-AuNPs nanohybrid synthesis. The chemical composition, S-doping, and the morphology of the nanohybrid were confirmed by various microscopic and spectroscopic tools. The as-synthesized nanohybrid was fabricated with glassy carbon (GC) electrode for determining the carcinogenic hydrazine (HZ) and atrazine (ATZ) in field water samples. The present sensor exhibited superior electrocatalytic activity than GC/SCN and GC/AuNPs electrodes due to the synergism between SCN and AuNPs and the amperometric studies showed the good linear range of detection of 20 nM-0.5 mM and 500 nM-0.5 mM with the limit of detection of 0.22 and 69 nM (S/N = 3) and excellent sensitivity of 1173.5 and 13.96 µA mM-1 cm-2 towards HZ and ATZ, respectively. Ultimately, the present sensor is exploited in environmental samples for monitoring HZ and ATZ and the obtained results are validated with high-performance liquid chromatography (HPLC) technique. The excellent recovery percentage and close agreement with the results of HPLC analysis proved the practicability of the present sensor. In addition, the as-prepared materials were utilized for the photocatalytic degradation of ATZ and the SCN-AuNPs nanohybrid exhibited higher photocatalytic activity with the removal efficiency of 93.6% at 90 min. Finally, the degradation mechanism was investigated and discussed.


Asunto(s)
Carcinógenos , Oro , Grafito , Nanopartículas del Metal , Contaminantes Químicos del Agua , Oro/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Nanopartículas del Metal/química , Grafito/química , Carcinógenos/análisis , Atrazina/análisis , Atrazina/química , Azufre/química , Azufre/análisis , Técnicas Electroquímicas/métodos , Hidrazinas/análisis , Hidrazinas/química , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/análisis , Nitrilos/química , Nitrilos/análisis , Monitoreo del Ambiente/métodos
2.
ACS Appl Mater Interfaces ; 15(46): 54105-54118, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948059

RESUMEN

In this study, a solution-based synthesis technique was utilized to produce Cu2O nanoparticles (NPs) on TiO2 nanofibers (TNF), which were then subsequently coated with reduced graphene oxide (rGO) nanosheets. In the absence of any cocatalyst, CTNF@rGO-3% composite displayed an ideal photocatalytic H2 evolution rate of 96 µmol g-1 h-1 under visible light irradiation, this was 10 times higher than that of pure TNF. At 420 nm, the apparent quantum efficiency of this composite reached a maximum of 7.18%. Kelvin probe force microscopy demonstrated the formation of an interfacial electric field that was oriented from CTNF to rGO and served as the driving force for interfacial electron transfer. The successful establishment of an intimate interface between CTNF@rGO facilitated the efficient transfer of charges and suppressed the rate of recombination of photogenerated electron-hole pairs, leading to a substantial enhancement in photocatalytic performance. X-ray photoelectron spectroscopy, photoluminescence spectra, and electrochemical characterization provide further confirmation that formation of a heterojunction between CTNF@rGO leads to an extension in the lifetimes of the photogenerated charge carriers. The experimental evidence suggests that a p-n heterojunction is the mechanism responsible for the significant photocatalytic activity observed in the CTNF@rGO composite during H2 evolution.

3.
Environ Res ; 212(Pt E): 113635, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688220

RESUMEN

The use of visible-driven photocatalysts has fascinated attention as a capable and sustainable approach for wastewater remediation. In this work, BiOBr/carbon quantum dot (CQDs)/saponite composites (CQDs/Clay@BiOBr) were fabricated via hydrothermally using two different CQDs/Clay precursors (in-situ synthesis (IS) and physical mixing (PM)). The obtained products were characterized, and the photocatalytic performances of the prepared samples were evaluated in the photocatalytic decomposition of emerging ciprofloxacin (CIP) pharmaceutical waste. The highest CIP mineralization performance was achieved when a combination of BiOBr and CQDs/Clay (IS) with the appropriate proportion because the strong adhesion between CQDs and clay generate a great heterojunction in the composite. The stronger interaction of CQDs and better distribution of CQDs on the surface of clay in the CQDs/Clay (IS) enhanced the interaction of BiOBr and CQDs, and avoided the re-agglomeration of excess of CQDs on surface of BiOBr which reduce the active surface to receive the light and react with CIP. The ultrafast degradation rate of the optimized CQDs/Clay@BiOBr composite was better compared to others. The significant improvement in the CIP degradation efficiency of the CQDs/Clay@BiOBr composite was attributed to the excellent separation and transportation of photogenerated electrons and holes, as confirmed by photoluminescence, photocurrent density, and electrochemical impedance spectroscopy results. Moreover, the photocatalytic degradation mechanism of CIP in the CQDs/Clay@BiOBr composite was proposed based on the electronic states of each material in the composite and on a scavenger test. Thus, the proposed CQDs/Clay@BiOBr composite can be employed as a potential visible-light-driven photocatalyst for the decomposition of organic contaminants in wastewater.


Asunto(s)
Puntos Cuánticos , Silicatos de Aluminio , Bismuto , Carbono , Catálisis , Ciprofloxacina , Arcilla , Luz , Puntos Cuánticos/química , Aguas Residuales
4.
Environ Res ; 212(Pt A): 113185, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35395238

RESUMEN

We report an effective facile immobilization of noble nanoparticles (Mx = Ag, Au and Pd) assembled on g-C3N4 (g-CN) prepared via a simple ultra-sonication strategy. The Mx assembled g-CN nanocomposites were applied for the effective conversion of 4-nitrophenol (4-NP). As prepared nanocomposites were characterized by techniques of XRD, SEM-EDS, TEM, XPS, and FT-IR analysis to gain crystallographic structural, and morphological insights. The Pd@g-C3N4 (Pd@g-CN) nanocomposite exhibited best catalytic performance (kapp = 1.141 min-1) toward the conversion of 4-NP to 4-aminophenol (4-AP), almost 100% within 4 min using aqueous sodium borohydride (NaBH4). The higher catalytic efficiency of Pd@g-CN could be attributed to the surface electron density on the Pd and rapid electron transfer capacity. Interestingly, g-CN not only role as a stabilizer but also provided compatibility for noble metal deposition, which improves the chemical and morphological stability of noble metal nanoparticles. Different reaction parameters including concentrations of 4-NP, and catalyst amount were studied. These unique combinations make noble metal nanoparticles anchored g-CN nanosheets an ideal platform for catalysis applications and environmental remediation.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Catálisis , Grafito , Nanopartículas del Metal/química , Compuestos de Nitrógeno , Nitrofenoles , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
5.
Chemosphere ; 298: 134311, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35307392

RESUMEN

Pharmaceutical organics are a vital milestone in contemporary human research since they treat various diseases and improve the quality of human life. However, these organic compounds are considered one of the major environmental hazards after the conception, along with the massive rise in antimicrobial resistance (AMR) in an ecosystem. There are various biological and catalytic technologies existed to eliminate these organics in aqueous system with their limitation. Advanced Oxidation processes (AOPs) are used to decompose these pharmaceutical organic compounds in the wastewater by generating reactive species with high oxidation potential. This review focused various photocatalysts, and photocatalytic oxidation processes, especially core-shell materials for photo (electro)catalytic application in pharmaceutical wastewater decomposition. Moreover, we discussed in details about the design and recent developments of core shell catalysts and comparison for photocatalytic, electrocatalytic and photo electrocatalytic applications in pharmaceutical wastewater treatment. In addition, the mixture of inorganic and organic core-shell materials, and metal-organic framework-based core-shell catalysts discussed in detail for antibiotic degradation.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Ecosistema , Humanos , Oxidación-Reducción , Preparaciones Farmacéuticas , Aguas Residuales , Contaminantes Químicos del Agua/análisis
6.
Chemosphere ; 291(Pt 3): 132977, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34801570

RESUMEN

Pharmaceutical wastes, acetaminophen (AP) widely used in medical fields, is often discharged into water, causing harm to human health. Hence, there is an urgent need to effectively remove AP from wastewater systems. In this paper, polypyrrole (PPy) composite with MoO3 has been synthesized via an in-situ polymerization method. The as-prepared materials were thoroughly characterized by XRD, FT-IR, UV-DRS, SEM, TEM and mapping techniques. The as-prepared MoO3@PPy composite was utilized to removal of AP via photocatalytic degradation and electrochemical determination. Under optimized composite, MoO3@PPy (2) showed an excellent photocatalytic degradation and electrochemical determination of AP compared to pure MoO3 and all other composites. The higher catalytic activity was ascribed to the effective interfacial charges transfer, reduce the recombination and enhance the active surface area of electrode via a synergistic effect. The photocatalytic degradation mechanism, rate and kinetic of the reaction were investigated and discussed. The major active degradation species and an effective charge transfer properties were confirmed by trapping experiments and photocurrent spectra. In addition, the MoO3@PPy (2) modified GCE exhibit the AP determination activity by DPV with a linear range of 0.05-546 µM. The limit of detection and sensitivity of electrode were 0.0007 µM and 0.242 µM-1 cm-2 respectively. Moreover, the proposed electrode showed good selectivity, stability and reproducibility. This method was useful for the determination of AP in real samples.


Asunto(s)
Polímeros , Pirroles , Acetaminofén , Electrodos , Humanos , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier
7.
Chem Commun (Camb) ; 57(55): 6772-6775, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34136889

RESUMEN

Hollow porous graphitic carbon nitride (porous CN) was synthesized via a simple tactic method, and the resulting porous CN showed an effectively modified surface area, crystal structure and enhanced photocatalytic performance. Optical and electrochemical characterization results demonstrated an increase in the charge transfer rate and a decrease in recombination tendency.

8.
Ultrason Sonochem ; 62: 104870, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31806556

RESUMEN

In this work, uniform α-MnO2 nanorods were synthesized via a simple hydrothermal followed by ultrasonication method using ultrasonic bath (20 kHz, 100 W) without using any surfactant and template. The crystallographic phases and surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transition electron microscopy (TEM) analysis, respectively. Functional group identification and chemical states of α-MnO2 nanorods were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The as-synthesized uniform nanorods of α-MnO2 exhibit excellent catalytic conversion of toxic organic contaminant (methylene blue (MB)) in the presence of NaBH4 as reductant. The α-MnO2 exhibits excellent stability up to four repeated catalytic cycles with nearly 92% conversion. The kinetic rate constant (k), and turnover frequency (TOF) were 0.736 min-1 and 0.02 mmol mg-1 min-1, respectively. In addition, the fast electron transfer mechanism were investigated and discussed. These results open a new avenue for developing various metal oxide catalysts, which are expected to be very useful catalytic conversions.

9.
Ultrason Sonochem ; 61: 104828, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31670250

RESUMEN

A novel organic-inorganic nile-blue - CeO2 (CeO2/NB) nanohybrid has been synthesized by environmentally benign ultrasonic irradiation method for the selective determination of the environmental pollutant, carcinogenic hydrazine (HZ) in environmental water samples. Hydrophobic dyes have generally been as redox mediators in electrochemical sensors fabrication due to strong electron transfer capacity and they would allow the oxidation and reduction of the analytes at lower potentials. The CeO2 nanoparticles were initially synthesized by the ultrasonic irradiation of Ce(NO3)2, NH4OH and ethylene glycol mixture for 6 h using probe sonicator (20 kHz, 100 W) followed by calcination. The organic-dye NB was then added and ultrasonicated further 30 min for the formation of CeO2/NB nanohybrid material. Various spectroscopic and microscopic tools such as UV-vis and FT-IR spectroscopy, XRD, SEM and high-solution TEM and surface analysis tool Brunauer-Emmett-Teller (BET) confirm the formation of the nanohybrid. HR-TEM images showed the well-covered CeO2 on NB molecules and the average size of the nanohybrid is ~35 nm. For the fabrication of environmental pollutant electrochemical sensor, the prepared CeO2/NB nanohybrid was drop-casted on the electrode surface and utilized for the determination of HZ. The nanohybrid modified electrode exhibits higher electrocatalytic activity by showing enhanced oxidation current and less positive potential shift towards HZ oxidation than the bare and individual CeO2 and NB modified electrodes. The fabricated sensor with excellent reproducibility, repeatability, long-term storage stability and cyclic stability exhibited the sensational sensitivity (484.86 µA mM-1 cm-2) and specificity in the presence of 50-fold possible interfering agents with the lowest limit of detection of 57 nM (S/N = 3) against HZ. Utilization of the present sensor in environmental samples with excellent recovery proves it practicability in the determination of HZ in real-time application.

10.
Ultrason Sonochem ; 59: 104738, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31476700

RESUMEN

In this work, the CeO2@polypyrrole (CeO2@PPy) core-shell nanosphere has been synthesized via an ultra-sonication method using bath type (WUC-D22H, Daihan Scientific, Korea) and they are utilized for the photo-reduction of hazardous Cr6+ to benign Cr3+. The ultrasonic frequency and power were 20 kHz and 100 W, respectively. The PPy shielded CeO2 in aqueous solution could prevent the dissolution of CeO2 and to improve the photocatalytic ability of CeO2. X-ray diffraction was used to confirm the crystalline structure of as prepared CeO2@PPy core-shell and FT-IR was used to identify the functional groups. The uniform sized core of PPy and shell of CeO2 were observed by transition electron microscopy. The ultrasonic assisted synthesized CeO2@PPy core-shell exhibits a narrow bandgap (UV-DRS) and good reduction efficiency with higher reusability and stability compared to pure CeO2, PPy and mechanical mixing of CeO2@PPy. Moreover, the synergistic effect of CeO2 and PPy core-shell structure facilitate a higher electron transfer rate and prolong lifetime of photogenerated electron-hole pairs which can achieve good reduction rate of 98.6% within 30 min. In particular, the pH, catalyst, and Cr6+ concentration effects were optimized in photocatalytic reduction reactions. Meanwhile, this photocatalysis with fast and effective electron transfer mechanism for the Cr6+ reduction was elucidated. This method opens a new window for simple fabrication of conducting polymers-based metal oxide nanocomposite towards wastewater remediation and beyond.

11.
Ultrason Sonochem ; 58: 104649, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31450344

RESUMEN

Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.


Asunto(s)
Cobre/química , Electroquímica/instrumentación , Límite de Detección , Preparaciones Farmacéuticas/química , Fenoles/análisis , Ondas Ultrasónicas , Agua/química , Técnicas de Química Sintética , Electrodos , Nanotecnología , Fenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA