Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953987

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19, may lead to multiple organ dysfunctions and long-term complications. The induction of microvascular dysfunction is regarded as a main player in these pathological processes. To investigate the possible impact of SARS-CoV-2-induced endothelial-to-mesenchymal transition (EndMT) on fibrosis in "long-COVID" syndrome, we used primary cultures of human microvascular cells derived from the lungs, as the main infection target, compared to cells derived from different organs (dermis, heart, kidney, liver, brain) and to the HUVEC cell line. To mimic the virus action, we used mixed SARS-CoV-2 peptide fragments (PepTivator®) of spike (S), nucleocapsid (N), and membrane (M) proteins. TGFß2 and cytokine mix (IL-1ß, IL-6, TNFα) were used as positive controls. The percentage of cells positive to mesenchymal and endothelial markers was quantified by high content screening. We demonstrated that S+N+M mix induces irreversible EndMT in all analyzed endothelial cells via the TGFß pathway, as demonstrated by ApoA1 treatment. We then tested the contribution of single peptides in lung and brain cells, demonstrating that EndMT is triggered by M peptide. This was confirmed by transfection experiment, inducing the endogenous expression of the glycoprotein M in lung-derived cells. In conclusion, we demonstrated that SARS-CoV-2 peptides induce EndMT in microvascular endothelial cells from multiple body districts. The different peptides play different roles in the induction and maintenance of the virus-mediated effects, which are organ-specific. These results corroborate the hypothesis of the SARS-CoV-2-mediated microvascular damage underlying the multiple organ dysfunctions and the long-COVID syndrome.

2.
Alzheimers Res Ther ; 16(1): 116, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773640

RESUMEN

Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.


Asunto(s)
Enfermedad de Alzheimer , Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Ratones , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran/toxicidad , Microbioma Gastrointestinal , Fenotipo , Masculino , Hipocampo/patología , Hipocampo/metabolismo , Femenino , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/etiología
3.
Theriogenology ; 219: 167-179, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437767

RESUMEN

Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90ß). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.


Asunto(s)
Semen , Interacciones Espermatozoide-Óvulo , Masculino , Porcinos , Animales , Fertilización In Vitro/veterinaria , Fertilización In Vitro/métodos , Espermatozoides/metabolismo , Oocitos , Zona Pelúcida/metabolismo , Albúminas/metabolismo , Tirosina/metabolismo
4.
Vet Comp Oncol ; 22(1): 70-77, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112225

RESUMEN

Haemangiosarcoma is a highly metastatic and lethal cancer of blood vessel-forming cells that commonly spreads to the brain in both humans and dogs. Dysregulations in phosphatase and tensin (PTEN) homologue have been identified in various types of cancers, including haemangiosarcoma. MicroRNAs (miRNAs) are short noncoding single-stranded RNA molecules that play a crucial role in regulating the gene expression. Some miRNAs can function as oncogenes or tumour suppressors, influencing important processes in cancer, such as angiogenesis. This study aimed to investigate whether miRNAs targeting PTEN were disrupted in canine haemangiosarcoma and its corresponding brain metastases (BM). The expression levels of miRNA-10b, miRNA-19b, miRNA-21, miRNA-141 and miRNA-494 were assessed in samples of primary canine cardiac haemangiosarcomas and their matched BM. Furthermore, the miRNA profile of the tumours was compared to samples of adjacent non-cancerous tissue and healthy control tissues. In primary cardiac haemangiosarcoma, miRNA-10b showed a significant increase in expression, while miRNA-494 and miRNA-141 exhibited downregulation. Moreover, the overexpression of miRNA-10b was retained in metastatic brain lesions. Healthy tissues demonstrated significantly different expression patterns compared to cancerous tissues. In particular, the expression of miRNA-10b was nearly undetectable in both control brain tissue and perimetastatic cerebral tissue. These findings can provide a rationale for the development of miRNA-based therapeutic strategies, aimed at selectively treating haemangiosarcoma.


Asunto(s)
Neoplasias Encefálicas , Enfermedades de los Perros , Hemangiosarcoma , MicroARNs , Humanos , Perros , Animales , MicroARNs/genética , MicroARNs/metabolismo , Hemangiosarcoma/genética , Hemangiosarcoma/veterinaria , Enfermedades de los Perros/genética , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/veterinaria , Regulación Neoplásica de la Expresión Génica
5.
Oxid Med Cell Longev ; 2023: 7638223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663921

RESUMEN

Starting from the discovery of phototherapy in the beginning of the last century, photobiomodulation (PBM) has been defined in late 1960s and, since then, widely described in different in vitro models. Robust evidence indicates that the effect of light exposure on the oxidative state of the cells and on mitochondrial dynamics, suggesting a great therapeutic potential. The translational scale-up of PBM, however, has often given contrasting and confusing results, mainly due to light exposure protocols which fail to adequately control or define factors such as emitting device features, emitted light characteristics, exposure time, cell target, and readouts. In this in vitro study, we describe the effects of a strictly controlled light-emitting diode (LED)-based PBM protocol on human fibroblasts, one of the main cells involved in skin care, regeneration, and repair. We used six emitter probes at different wavelengths (440, 525, 645, 660, 780, and 900 nm) with the same irradiance value of 0.1 mW/cm2, evenly distributed over the entire surface of the cell culture well. The PBM was analyzed by three main readouts: (i) mitochondrial potential (MitoTracker Orange staining), (ii) reactive oxygen species (ROS) production (CellROX staining); and (iii) cell death (nuclear morphology). The assay was also implemented by cell-based high-content screening technology, further increasing the reliability of the data. Different exposure protocols were also tested (one, two, or three subsequent 20 s pulsed exposures at 24 hr intervals), and the 645 nm wavelength and single exposure chosen as the most efficient protocol based on the mitochondrial potential readout, further confirmed by mitochondrial fusion quantification. This protocol was then tested for its potential to prevent H2O2-induced oxidative stress, including modulation of the light wave frequency. Finally, we demonstrated that the controlled PBM induced by the LED light exposure generates a preconditioning stimulation of the mitochondrial potential, which protects the cell from oxidative stress damage.


Asunto(s)
Fibroblastos , Peróxido de Hidrógeno , Humanos , Potencial de la Membrana Mitocondrial , Reproducibilidad de los Resultados , Oxidación-Reducción
6.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37765015

RESUMEN

Oligodendrocytes and their precursors are the cells responsible for developmental myelination and myelin repair during adulthood. Their differentiation and maturation processes are regulated by a complex molecular machinery driven mainly by triiodothyronine (T3), the genomic active form of thyroid hormone, which binds to thyroid hormone receptors (TRs), regulating the expression of target genes. Different molecular tools have been developed to mimic T3 action in an attempt to overcome the myelin repair deficit that underlies various central nervous system pathologies. In this study, we used a well-established in vitro model of neural stem cell-derived oligodendrocyte precursor cells (OPCs) to test the effects of two compounds: the TRß1 ligand IS25 and its pro-drug TG68. We showed that treatment with TG68 induces OPC differentiation/maturation as well as both the natural ligand and the best-known TRß1 synthetic ligand, GC-1. We then described that, unlike T3, TG68 can fully overcome the cytokine-mediated oligodendrocyte differentiation block. In conclusion, we showed the ability of a new synthetic compound to stimulate OPC differentiation and overcome inflammation-mediated pathological conditions. Further studies will clarify whether the compound acts as a pro-drug to produce the TRß1 ligand IS25 or if its action is mediated by secondary mechanisms such as AMPK activation.

7.
Cells ; 12(9)2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37174731

RESUMEN

Spinal cord injury (SCI) is characterized by a cascade of events that lead to sensory and motor disabilities. To date, this condition is irreversible, and no cure exists. To improve myelin repair and limit secondary degeneration, we developed a multitherapy based on nanomedicines (NMeds) loaded with the promyelinating agent triiodothyronine (T3), used in combination with systemic ibuprofen and mouse nerve growth factor (mNGF). Poly-L-lactic-co-glycolic acid (PLGA) NMeds were optimized and loaded with T3 to promote sustained release. In vitro experiments confirmed the efficacy of T3-NMeds to differentiate oligodendrocyte precursor cells. In vivo rat experiments were performed in contusion SCI to explore the NMed biodistribution and efficacy of combo drugs at short- and long-term post-lesion. A strong anti-inflammatory effect was observed in the short term with a reduction of type M1 microglia and glutamate levels, but with a subsequent increase of TREM2. In the long term, an improvement of myelination in NG2-IR, an increase in MBP content, and a reduction of the demyelination area were observed. These data demonstrated that NMeds can successfully be used to obtain more controlled local drug delivery and that this multiple treatment could be effective in improving the outcome of SCIs.


Asunto(s)
Remielinización , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Remielinización/fisiología , Distribución Tisular , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Vaina de Mielina/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Glicoproteínas de Membrana/farmacología , Receptores Inmunológicos
8.
Stem Cell Res Ther ; 14(1): 128, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170115

RESUMEN

BACKGROUND: Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS: adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS: The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS: Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.


Asunto(s)
Células Madre Mesenquimatosas , Neuroprotección , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Oxígeno/metabolismo
9.
Front Neurosci ; 17: 1111170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875668

RESUMEN

Introduction: Nerve growth factor (NGF) is a pleiotropic molecule acting on different cell types in physiological and pathological conditions. However, the effect of NGF on the survival, differentiation and maturation of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), the cells responsible for myelin formation, turnover, and repair in the central nervous system (CNS), is still poorly understood and heavily debated. Methods: Here we used mixed neural stem cell (NSC)-derived OPC/astrocyte cultures to clarify the role of NGF throughout the entire process of OL differentiation and investigate its putative role in OPC protection under pathological conditions. Results: We first showed that the gene expression of all the neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR ) dynamically changes during the differentiation. However, only TrkA and p75NTR expression depends on T3-differentiation induction, as Ngf gene expression induction and protein secretion in the culture medium. Moreover, in the mixed culture, astrocytes are the main producer of NGF protein, and OPCs express both TrkA and p75NTR . NGF treatment increases the percentage of mature OLs, while NGF blocking by neutralizing antibody and TRKA antagonist impairs OPC differentiation. Moreover, both NGF exposure and astrocyte-conditioned medium protect OPCs exposed to oxygenglucose deprivation (OGD) from cell death and NGF induces an increase of AKT/pAKT levels in OPCs nuclei by TRKA activation. Discussion: This study demonstrated that NGF is implicated in OPC differentiation, maturation, and protection in the presence of metabolic challenges, also suggesting implications for the treatment of demyelinating lesions and diseases.

10.
Cells ; 12(4)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831228

RESUMEN

Lipid membrane turnover and myelin repair play a central role in diseases and lesions of the central nervous system (CNS). The aim of the present study was to analyze lipid composition changes due to inflammatory conditions. We measured the fatty acid (FA) composition in erythrocytes (RBCs) and spinal cord tissue (gas chromatography) derived from mice affected by experimental allergic encephalomyelitis (EAE) in acute and remission phases; cholesterol membrane content (Filipin) and GM1 membrane assembly (CT-B) in EAE mouse RBCs, and in cultured neurons, oligodendroglial cells and macrophages exposed to inflammatory challenges. During the EAE acute phase, the RBC membrane showed a reduction in polyunsaturated FAs (PUFAs) and an increase in saturated FAs (SFAs) and the omega-6/omega-3 ratios, followed by a restoration to control levels in the remission phase in parallel with an increase in monounsaturated fatty acid residues. A decrease in PUFAs was also shown in the spinal cord. CT-B staining decreased and Filipin staining increased in RBCs during acute EAE, as well as in cultured macrophages, neurons and oligodendrocyte precursor cells exposed to inflammatory challenges. This regulation in lipid content suggests an increased cell membrane rigidity during the inflammatory phase of EAE and supports the investigation of peripheral cell membrane lipids as possible biomarkers for CNS lipid membrane concentration and assembly.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ácidos Grasos Omega-3 , Ratones , Animales , Filipina/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Ácidos Grasos Insaturados/metabolismo , Inflamación/metabolismo , Eritrocitos/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Vaina de Mielina/metabolismo
11.
Fish Shellfish Immunol ; 133: 108518, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610607

RESUMEN

The entire shellfish farming sector is negatively affected by heat waves. Predictive models show that while heat waves are not predicted to exceed 28 °C in the northern Adriatic Sea over the coming decades, their duration will increase to periods of up to 30 days. Knowledge regarding the effects of heat waves on bivalves at physiological and molecular level is still limited. This study attempted to simulate what will happen in the future in Pacific oysters exposed to prolonged heat waves, assessing morphometric and physiological indices, and investigating the expression level of a number of genes, including the chaperone heat shock proteins HSP70, HSP72 and HSP90, and the factor P53. A state of stress in the heat wave-exposed animals was found, with loss of body weight and energy resources: despite showing a higher clearance rate, these animals were unable to absorb the nutrients required to maintain homeostasis, as well as demonstrating an alteration in hemolymphatic AST activity, total calcium and magnesium concentration. mRNA levels of all examined genes increased in response to thermal stress, with long-term overexpression, activating cell stress defense mechanisms and modulating the cycle cell. The results of this study indicate that heat waves affect oyster welfare, with consequences for the productivity of the sector due to the lack of salable products.


Asunto(s)
Crassostrea , Animales , Crassostrea/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , ARN Mensajero/metabolismo
12.
ACS Appl Bio Mater ; 6(1): 296-308, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36542733

RESUMEN

Skin wound healing is a highly complex process that continues to represent a major medical problem, due to chronic nonhealing wounds in several classes of patients and to possible fibrotic complications, which compromise the function of the dermis. Integrins are transmembrane receptors that play key roles in this process and that offer a recognized druggable target. Our group recently synthesized GM18, a specific agonist for α4ß1, an integrin that plays a role in skin immunity and in the migration of neutrophils, also regulating the differentiated state of fibroblasts. GM18 can be combined with poly(l-lactic acid) (PLLA) nanofibers to provide a controlled release of this agonist, resulting in a medication particularly suitable for skin wounds. In this study, we first optimized a GM18-PLLA nanofiber combination with a 7-day sustained release for use as skin wound medication. When tested in an experimental pressure ulcer in diabetic mice, a model for chronic nonhealing wounds, both soluble and GM18-PLLA formulations accelerated wound healing, as well as regulated extracellular matrix synthesis toward a nonfibrotic molecular signature. In vitro experiments using the adhesion test showed fibroblasts to be a principal GM18 cellular target, which we then used as an in vitro model to explore possible mechanisms of GM18 action. Our results suggest that the observed antifibrotic behavior of GM18 may exert a dual action on fibroblasts at the α4ß1 binding site and that GM18 may prevent profibrotic EDA-fibronectin-α4ß1 binding and activate outside-in signaling of the ERK1/2 pathways, a critical component of the wound healing process.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Integrina beta1 , Integrinas , Cicatrización de Heridas , Integrina alfa4/metabolismo
13.
Adv Exp Med Biol ; 1383: 9-17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36587142

RESUMEN

Severe gut motility disorders are characterized by ineffective propulsion of intestinal contents. As a result, patients often develop extremely uncomfortable symptoms, ranging from nausea and vomiting along with alterations of bowel habits, up to radiologically confirmed subobstructive episodes. Chronic intestinal pseudo-obstruction (CIPO) is a typical clinical phenotype of severe gut dysmotility due to morphological and functional alterations of the intrinsic (enteric) innervation and extrinsic nerve supply (hence neuropathy), interstitial cells of Cajal (ICCs) (mesenchymopathy), and smooth muscle cells (myopathy). In this chapter, we highlight some molecular mechanisms of CIPO and review the clinical phenotypes and the genetics of the different types of CIPO. Specifically, we will detail the role of some of the most representative genetic mutations involving RAD21, LIG3, and ACTG2 to provide a better understanding of CIPO and related underlying neuropathic or myopathic histopathological abnormalities. This knowledge may unveil targeted strategies to better manage patients with such severe disease.


Asunto(s)
Seudoobstrucción Intestinal , Humanos , Seudoobstrucción Intestinal/genética , Seudoobstrucción Intestinal/diagnóstico , Intestino Delgado , Mutación , Enfermedad Crónica , Motilidad Gastrointestinal/genética
14.
Vet Sci ; 9(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36136667

RESUMEN

The importance of trophic factors, such as nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) during the perinatal period, is now emerging. Through their functional activities of neurogenesis and angiogenesis, they play a key role in the final maturation of the nervous and vascular systems. The present study aims to: (i) evaluate the NGF and VEGF levels obtained at parturition from the mare, foal and umbilical cord vein plasma, as well as in amniotic fluid; (ii) evaluate NGF and VEGF content in the plasma of healthy foals during the first 72 h of life (T0, T24 and T72); (iii) evaluate NGF and VEGF levels at parturition in relation to the selected mares' and foals' clinical parameters; (iv) evaluate the relationship between the two trophic factors and the thyroid hormone levels (TT3 and TT4) in the first 72 h of life; (v) assess mRNA expression of NGF, VEGF and BDNF and their cell surface receptors in the placenta. Fourteen Standardbred healthy foals born from mares with normal pregnancies and parturitions were included in the study. The dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF and BDNF placental gene expression was performed using semi-quantitative real-time PCR. In foal plasma, both NGF and VEGF levels decreased significantly over time, from T0 to T24 (p = 0.0066 for NGF; p < 0.0001 for VEGF) and from T0 to T72 (p = 0.0179 for NGF; p = 0.0016 for VEGF). In foal serum, TT3 levels increased significantly over time from T0 to T24 (p = 0.0058) and from T0 to T72 (p = 0.0013), whereas TT4 levels decreased significantly over time from T0 to T24 (p = 0.0201) and from T0 to T72 (p < 0.0001). A positive correlation was found in the levels of NGF and VEGF in foal plasma at each time point (p = 0.0115; r = 0.2862). A positive correlation was found between NGF levels in the foal plasma at T0 and lactate (p = 0.0359; r = 0.5634) as well as between VEGF levels in the foal plasma at T0 and creatine kinase (p = 0.0459; r = 0.5407). VEGF was expressed in all fetal membranes, whereas NGF and its receptors were not expressed in the amnion. The close relationship between the two trophic factors in foal plasma over time and their fine expression in placental tissues appear to be key regulators of fetal development and adaptation to extra-uterine life.

15.
Vet Sci ; 9(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36136675

RESUMEN

Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare's jugular vein, umbilical cord vein and foal's jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare's and foal's clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589). In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE.

16.
Neural Regen Res ; 17(11): 2376-2380, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35535874

RESUMEN

Efficient strategies for neuroprotection and repair are still an unmet medical need for neurodegenerative diseases and lesions of the central nervous system. Over the last few decades, a great deal of attention has been focused on white matter as a potential therapeutic target, mainly due to the discovery of the oligodendrocyte precursor cells in the adult central nervous system, a cell type able to fully repair myelin damage, and to the development of advanced imaging techniques to visualize and measure white matter lesions. The combination of these two events has greatly increased the body of research into white matter alterations in central nervous system lesions and neurodegenerative diseases and has identified the oligodendrocyte precursor cell as a putative target for white matter lesion repair, thus indirectly contributing to neuroprotection. This review aims to discuss the potential of white matter as a therapeutic target for neuroprotection in lesions and diseases of the central nervous system. Pivot conditions are discussed, specifically multiple sclerosis as a white matter disease; spinal cord injury, the acute lesion of a central nervous system component where white matter prevails over the gray matter, and Alzheimer's disease, where the white matter was considered an ancillary component until recently. We first describe oligodendrocyte precursor cell biology and developmental myelination, and its regulation by thyroid hormones, then briefly describe white matter imaging techniques, which are providing information on white matter involvement in central nervous system lesions and degenerative diseases. Finally, we discuss pathological mechanisms which interfere with myelin repair in adulthood.

17.
Reprod Fertil Dev ; 34(9): 679-688, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35361313

RESUMEN

CONTEXT: While conventional semen analysis is a simple, time-saving, and economical means to evaluate sperm quality, it leaves biochemical and metabolic characteristics of spermatozoa aside. To address this issue, the use of fluorescent probes assessing functional sperm parameters, such as JC-1, DiOC6 (3) and MitoTracker, has increased over the last decades. Apparently contradictory observations have nevertheless fostered an ongoing debate on their sensitivity and ability to evaluate the mitochondrial membrane potential (MMP) of sperm cells, thus warranting a re-examination of these probes. AIMS: The present study aims to elucidate the suitability and sensitivity of each probe to evaluate the MMP of bovine spermatozoa by flow cytometry. METHODS: Cryopreserved spermatozoa from ten bulls were thawed, stained with JC-1/SYTOXRed, DiOC6 (3)/propidium iodide (PI) or MitoTracker Deep Red (MTDR)/PI, and evaluated with flow cytometry and fluorescence microscopy. KEY RESULTS: DiOC6 (3), JC-1 and MTDR can be simultaneously co-stained with a viability marker. The results of the present study support the ability of DiOC6 (3)/PI and JC-1/SYTOXRed, but not that of MTDR/PI, to monitor the MMP of spermatozoa. CONCLUSIONS: JC-1/SYTOXRed assessed by flow cytometry was found to be the most sensitive and robust fluorescent probe to assess MMP. Moreover, DiOC6 (3)/PI could be a suitable alternative when the flow cytometer is not equipped with a red laser and/or an adequate optical filter. IMPLICATIONS: Both DiOC6 (3) and JC-1, but not MTDR, could be used as probes to assess the mitochondrial membrane potential of bovine spermatozoa.


Asunto(s)
Colorantes Fluorescentes , Espermatozoides , Animales , Bovinos , Masculino , Citometría de Flujo/veterinaria , Microscopía Fluorescente/veterinaria , Propidio , Motilidad Espermática
18.
Cell Tissue Res ; 388(3): 595-613, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35386010

RESUMEN

Experimental models for chronic skin lesions are excision and pressure ulcer, defined as "open" and "closed" lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Diabetes Mellitus Experimental/genética , Hipoxia , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Piel/metabolismo , Cicatrización de Heridas/fisiología
19.
Animals (Basel) ; 12(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35327131

RESUMEN

Regenerative medicine applied to skin lesions is a field in constant improvement. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. The aim of this pilot study was to analyze the effect of an α4ß1 integrin agonist on cell adhesion of equine adipose tissue (AT) and Wharton's jelly (WJ) derived MSCs and to investigate their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA) scaffolds. Adhesion assays were performed after culturing AT- and WJ-MSCs with GM18 coating or soluble GM18. Cell adhesion on GM18 containing PLLA scaffolds after 20 min co-incubation was assessed by HCS. Soluble GM18 affects the adhesion of equine AT- and WJ-MSCs, even if its effect is variable between donors. Adhesion to PLLA scaffolds containing GM18 is not significantly influenced by GM18 for AT-MSCs after 20 min or 24 h of culture and for WJ-MSCs after 20 min, but increased cell adhesion by 15% GM18 after 24 h. In conclusion, the α4ß1 integrin agonist GM18 affects equine AT- and WJ-MSCs adhesion ability with a donor-related variability. These preliminary results represent a first step in the study of equine MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be more suitable than AT-MSCs. However, the results need to be confirmed by increasing the number of samples before drawing definite conclusions.

20.
Prog Neurobiol ; 212: 102246, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35151792

RESUMEN

Retinoic acid is a powerful regulator of brain development, however its postnatal functions only start to be elucidated. We show that retinoic acid receptor beta (RARß), is involved in neuroprotection of striatopallidal medium spiny neurons (spMSNs), the cell type affected in different neuropsychiatric disorders and particularly prone to degenerate in Huntington disease (HD). Accordingly, the number of spMSNs was reduced in the striatum of adult Rarß-/- mice, which may result from mitochondrial dysfunction and neurodegeneration. Mitochondria morphology was abnormal in mutant mice whereas in cultured striatal Rarß-/- neurons mitochondria displayed exacerbated depolarization, and fragmentation followed by cell death in response to glutamate or thapsigargin-induced calcium increase. In vivo, Rarß-/- spMSNs were also more vulnerable to the mitochondrial toxin 3-nitropropionic acid (3NP), known to induce HD symptoms in human and rodents. In contrary, an RARß agonist, AC261066, decreased glutamate-induced toxicity in primary striatal neurons in vitro, and diminished mitochondrial dysfunction, spMSN cell death and motor deficits induced in wild type mice by 3NP. We demonstrate that the striatopallidal pathway is compromised in Rarß-/- mice and associated with HD-like motor abnormalities. Importantly, similar motor abnormalities and selective reduction of spMSNs were induced by striatal or spMSN-specific inactivation of RARß, further supporting a neuroprotective role of RARß in postnatal striatum.


Asunto(s)
Enfermedad de Huntington , Neuronas , Animales , Ácido Glutámico/metabolismo , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Receptores de Ácido Retinoico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...