Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274617

RESUMEN

Cannabigerol's (CBG) therapeutic effects are limited by its poor water solubility and low dissolution rate. To improve these properties, supercritical CO2-assisted atomization (SAA) was applied to produce coprecipitates, i.e., CBG nanoparticles coprecipitated in polyvinylpyrrolidone (PVP) microparticles. The experiments were performed by varying the CBG/PVP mass ratio (R) and the overall concentration of solutes CBG+PVP to study the influence of these parameters on particle morphology, particle size, and size distribution. Periodic dynamic light scattering (DLS) analysis was performed at regular time intervals to measure the size of CBG nanoparticles in PVP microparticles. It showed that CBG nanoparticles down to 105 nm were successfully produced through SAA. Dissolution tests were used to verify that a reduction of CBG particle size significantly increased its dissolution rate. In the liquid medium adopted, untreated CBG powder was released in 210 min, whereas CBG nanoparticles of 105 nm were completely dissolved in only 15 min.

2.
Molecules ; 29(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893374

RESUMEN

Bone tissue engineering (BTE) is the most promising strategy to repair bones injuries and defects. It relies on the utilization of a temporary support to host the cells and promote nutrient exchange (i.e., the scaffold). Supercritical CO2 assisted drying can preserve scaffold nanostructure, crucial for cell attachment and proliferation. In this work, agarose aerogels, loaded with hydroxyapatite were produced in view of BTE applications. Different combinations of agarose concentration and hydroxyapatite loadings were tested. FESEM and EDX analyses showed that scaffold structure suffered from partial closure when increasing filler concentration; hydroxyapatite distribution was homogenous, and Young's modulus improved. Looking at BTE applications, the optimal combination of agarose and hydroxyapatite resulted to be 1% w/w and 10% w/v, respectively. Mechanical properties showed that the produced composites could be eligible as starting scaffold for BTE, with a Young's Modulus larger than 100 kPa for every blend.


Asunto(s)
Huesos , Durapatita , Módulo de Elasticidad , Sefarosa , Ingeniería de Tejidos , Andamios del Tejido , Sefarosa/química , Ingeniería de Tejidos/métodos , Durapatita/química , Andamios del Tejido/química , Geles/química , Humanos , Ensayo de Materiales , Materiales Biocompatibles/química
3.
Nanomaterials (Basel) ; 14(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786802

RESUMEN

Niosomes are arousing significant interest thanks to their low cost, high biocompatibility, and negligible toxicity. In this work, a supercritical CO2-assisted process was performed at 100 bar and 40 °C to produce niosomes at different Span 80/Tween 80 weight ratios. The formulation of cholesterol and 80:20 Span 80/Tween 80 was selected to encapsulate vancomycin, used as a model active compound, to perform a drug release rate comparison between PEGylated and non-PEGylated niosomes. In both cases, nanometric vesicles were obtained, i.e., 214 ± 59 nm and 254 ± 73 nm for non-PEGylated and PEGylated niosomes, respectively, that were characterized by a high drug encapsulation efficiency (95% for non-PEGylated and 98% for PEGylated niosomes). However, only PEGylated niosomes were able to prolong the vancomycin release time up to 20-fold with respect to untreated drug powder, resulting in a powerful strategy to control the drug release rate.

4.
J Transl Med ; 22(1): 339, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594760

RESUMEN

One of the most effective strategies to fight viruses and handle health diseases is vaccination. Recent studies and current applications are moving on antigen, DNA and RNA-based vaccines to overcome the limitations related to the conventional vaccination strategies, such as low safety, necessity of multiple injection, and side effects. However, due to the instability of pristine antigen, RNA and DNA molecules, the use of nanocarriers is required. Among the different nanocarriers proposed for vaccinal applications, three types of nanovesicles were selected and analysed in this review: liposomes, transfersomes and niosomes. PubMed, Scopus and Google Scholar databases were used for searching recent papers on the most frequently used conventional and innovative methods of production of these nanovesicles. Weaknesses and limitations of conventional methods (i.e., multiple post-processing, solvent residue, batch-mode processes) can be overcome using innovative methods, in particular, the ones assisted by supercritical carbon dioxide. SuperSomes process emerged as a promising production technique of solvent-free nanovesicles, since it can be easily scaled-up, works in continuous-mode, and does not require further post-processing steps to obtain the desired products. As a result of the literature analysis, supercritical carbon dioxide assisted methods attracted a lot of interest for nanovesicles production in the vaccinal field. However, despite their numerous advantages, supercritical processes require further studies for the production of liposomes, transfersomes and niosomes with the aim of reaching well-defined technologies suitable for industrial applications and mass production of vaccines.


Asunto(s)
Liposomas , Vacunas , Liposomas/química , Dióxido de Carbono/química , Solventes , ADN , ARN
5.
Nanomaterials (Basel) ; 13(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999274

RESUMEN

Exopolysaccharides, obtained from microorganisms as fermentation products, are interesting candidates for biomedical applications as scaffolds: they are biocompatible, nontoxic, antimicrobial, antitumor materials. To produce exopolysaccharide-based scaffolds, sol-gel technology could be used, which ends with the removal of the liquid phase from the polymeric network (i.e., the drying step). The aim of this review is to point out the most relevant strengths and weaknesses of the different drying techniques, focusing attention on the production of exopolysaccharide-based porous structures. Among these drying processes, supercritical carbon dioxide-assisted drying is the most promising strategy to obtain dried gels to use in the biomedical field: it produces highly porous and lightweight devices with outstanding surface areas and regular microstructure and nanostructure (i.e., aerogels). As a result of the analysis carried out in the present work, it emerged that supercritical technologies should be further explored and applied to the production of exopolysaccharide-based nanostructured scaffolds. Moving research towards this direction, exopolysaccharide utilization could be intensified and extended to the production of high added-value devices.

6.
Nanomaterials (Basel) ; 13(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37368242

RESUMEN

Transfersomes are deformable vesicles that can transport drugs across difficult-to-permeate barriers in human tissues. In this work, nano-transfersomes were produced for the first time by a supercritical CO2 assisted process. Operating at 100 bar and 40 °C, different amounts of phosphatidylcholine (2000 and 3000 mg), kinds of edge activators (Span® 80 and Tween® 80), and phosphatidylcholine to edge activator weight ratio (95:5, 90:10, 80:20) were tested. Formulations prepared using Span® 80 and phosphatidylcholine at an 80:20 weight ratio produced stable transfersomes (-30.4 ± 2.4 mV ζ-potential) that were characterized by a mean diameter of 138 ± 55 nm. A prolonged ascorbic acid release of up to 5 h was recorded when the largest amount of phosphatidylcholine (3000 mg) was used. Moreover, a 96% ascorbic acid encapsulation efficiency and a quasi-100% DPPH radical scavenging activity of transfersomes were measured after supercritical processing.

7.
Nanomaterials (Basel) ; 13(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37177102

RESUMEN

Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.

8.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175312

RESUMEN

Clary Sage extracts are of industrial interest: in particular, sclareol shows a strong pharmaceutical potential. Supercritical fluid extraction was used to recover compounds of interest from a Salvia sclarea L. waxy n-hexane extract ("concrete"), using semi-continuous fractionation and a multi-step extraction strategy. Multi-step extraction experiments were carried out in two phases: the first one operated at 90 bar and 50 °C; the second one at 100 bar and 40 °C. GC-MS traces showed that during the first extraction step, only lighter compounds (e.g., monoterpenes, sesquiterpenes, and derivatives) were collected, whereas, in the second step, only sclareol and related compounds were recovered. By adjusting operating conditions (temperature and pressure), selective extraction of different families of compounds was accomplished, with no further need for post-processing of the products. Moreover, using two separators in series, the compounds of interest were fractionated from paraffins and, by changing the operating conditions, the extraction yield increased from about 6.0% to 9.3% w/w as CO2 density increased.

9.
Eur J Pharm Sci ; 180: 106325, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351487

RESUMEN

A global release model is proposed to study the drug release from porous materials for pharmaceutical applications. This model is defined by implementing a compartmental model where the release profile could be explained as the combination of mass transfer phenomena through three compartments as well as a desorption process or dissolution process from the support. This model was validated with five different systems produced with supercritical CO2 (aerogels, membranes, and fibers), showing different release processes. Numerical results indicate that this compartmental approach can be useful to determine adsorption and desorption constants as well as mass transfer resistances within the material. Likewise, this model can predict lag phases and imbibition phenomena. Therefore, the development of compartmental models can be an alternative to traditional models to successfully predict the drug profile of porous materials, achieving a complete understanding of the involved phenomena regardless of the material characteristics.


Asunto(s)
Modelos Epidemiológicos , Liberación de Fármacos , Porosidad , Adsorción
10.
Materials (Basel) ; 15(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36556698

RESUMEN

TiO2-loaded poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-coHFP) membranes were produced by supercritical CO2-assisted phase inversion. Three different TiO2 loadings were tested: 10, 20, and 30 wt% with respect to the polymer. Increasing the TiO2 amount from 10 wt% to 20 wt% in the starting solution, the transition from leafy-like to leafy-cellular morphology was observed in the section of the membrane. When 30 wt% TiO2 was used, the entire membrane section showed agglomerates of TiO2 nanoparticles. These polymeric membranes were tested to remove Sudan Blue II (SB) dye from aqueous solutions. The adsorption/photocatalytic processes revealed that membrane morphology and TiO2 cluster size were the parameters that mainly affected the dye removal efficiency. Moreover, after five cycles of exposure of these membranes to UV light, SB removal was higher than 85%.

11.
Materials (Basel) ; 15(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36363226

RESUMEN

Alginate-based microparticles were produced via supercritical assisted atomization (SAA) with the aim of obtaining a biocompatible and low-cost carrier for the delivery of active compounds in cosmetic applications. Salicylic acid was selected as an active model compound, and it was co-precipitated with alginate via SAA, operating at 82 bar and 80 °C. In particular, the drug-to-polymer weight ratio was fixed at 1/4, whereas polymer concentration was varied from 5 to 20 mg/mL in the starting aqueous solution. Operating in this way, alginate-salicylic acid microparticles were characterized by a mean diameter of 0.72 ± 0.25 µm, and the active compound became amorphous after processing. A salicylic acid encapsulation efficiency close to 100% was reached, and the drug release time from the biopolymeric microparticles was prolonged up to nine times with respect to untreated salicylic acid powder.

12.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35564110

RESUMEN

Traditional and supercritical CO2 assisted processes are frequently used to produce microparticles formed by a biopolymer containing an active principle to improve the bioavailability of the active principle. However, information about the internal organization of these microparticles is still scarce. In this work, a suspension of dextran + Fe3O4 nanoparticles (model system) and a solution of polyvinylpyrrolidone (PVP) + curcumin were used to produce spherical microparticles by supercritical CO2 processing. Periodic dynamic light scattering measurements were used to analyze the evolution of the microparticles dissolution, size, and size distribution of the guest active principle in the polymeric matrix. It was found that curcumin was dispersed in the form of nanoparticles in the PVP microparticles, whose size largely depended on its relative concentration. These results were validated by transmission electron microscopy and scanning electron microscopy of the PVP microparticles and curcumin nanoparticles, before and after the dissolution tests.

13.
Gels ; 7(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34842697

RESUMEN

In this work, the effect of two processes, i.e., freeze-drying and supercritical CO2 (SC-CO2) drying, on the final morphology of agarose-based porous structures, was investigated. The agarose concentration in water was varied from 1 wt% up to 8 wt%. Agarose cryogels were prepared by freeze-drying using two cooling rates: 2.5 °C/min and 0.1 °C/min. A more uniform macroporous structure and a decrease in average pore size were achieved when a fast cooling rate was adopted. When a slower cooling rate was performed instead, cryogels were characterized by a macroporous and heterogenous structure at all of the values of the biopolymer concentration investigated. SC-CO2 drying led to the production of aerogels characterized by a mesoporous structure, with a specific surface area up to 170 m2/g. Moreover, agarose-based aerogels were solvent-free, and no thermal changes were detected in the samples after processing.

14.
Polymers (Basel) ; 13(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068379

RESUMEN

Poly(ʟ-lactide) (PLLA) films, even of high thickness, exhibiting co-crystalline and crystalline α phases with their chain axes preferentially perpendicular to the film plane (c⊥ orientation) have been obtained. This c⊥ orientation, unprecedented for PLLA films, can be achieved by the crystallization of amorphous films as induced by low-temperature sorption of molecules being suitable as guests of PLLA co-crystalline forms, such as N,N-dimethylformamide, cyclopentanone or 1,3-dioxolane. This kind of orientation is shown and quantified by two-dimensional wide-angle X-ray diffraction (2D-WAXD) patterns, as taken with the X-ray beam parallel to the film plane (EDGE patterns), which present all the hk0 arcs centered on the meridian. PLLA α-form films, as obtained by low-temperature guest-induced crystallization, also exhibit high transparency, being not far from those of the starting amorphous films.

15.
Nanomaterials (Basel) ; 11(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072358

RESUMEN

A supercritical CO2 drying process was used to prepare an innovative nanocomposite, formed by a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF HFP) aerogel loaded with RuO2 nanoparticles. The produced nanocomposites, at 10% and 60% w/w of RuO2, were tested for the electrochemical oxidation of model tannery wastewaters. The effect of the electrochemical oxidation parameters, like pH, temperature, and current density, on tannic acid, intermediates, and chemical oxygen demand (COD) removal, was investigated. In particular, the electrolysis of a simulated real tannery wastewater, using PVDF HFP_RuO2 60, was optimized working at pH 10, 40 °C, and setting the current density at 600 A/m2. Operating in this way, surfactants, sulfides, and tannins oxidation was achieved in about 2.5 h, ammonium nitrogen oxidation in 3 h, and COD removal in 5 h. When chloride-containing solutions were tested, the purification was due to indirect electrolysis, related to surface redox reactions generating active chlorine. Moreover, sulfide ions were converted into sulfates and ammonium nitrogen in gaseous N2.

16.
Front Bioeng Biotechnol ; 9: 688477, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055766

RESUMEN

In this short review, drug delivery systems, formed by polysaccharide-based (i.e., agarose, alginate, and chitosan) aerogels, are analyzed. In particular, the main papers, published in the period 2011-2020 in this research field, have been investigated and critically discussed, in order to highlight strengths and weaknesses of the traditional production techniques (e.g., freeze-drying and air evaporation) of bio-aerogels with respect to supercritical CO2 assisted drying. Supercritical CO2 assisted drying demonstrated to be a promising technique to produce nanostructured bio-aerogels that maintain the starting gel volume and shape, when the solvent removal occurs at negligible surface tension. This characteristic, coupled with the possibility of removing also cross-linking agent residues from the aerogels, makes these advanced devices safe and suitable as carriers for controlled drug delivery applications.

17.
Materials (Basel) ; 14(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810582

RESUMEN

A comparative analysis concerning bio-based gels production, to be used for tissue regeneration, has been performed in this review. These gels are generally applied as scaffolds in the biomedical field, thanks to their morphology, low cytotoxicity, and high biocompatibility. Focusing on the time interval 2015-2020, the production of 3D scaffolds of alginate, chitosan and agarose, for skin and bone regeneration, has mainly been investigated. Traditional techniques are critically reviewed to understand their limitations and how supercritical CO2-assisted processes could overcome these drawbacks. In particular, even if freeze-drying represents the most widespread drying technique used to produce polysaccharide-based cryogels, supercritical CO2-assisted drying effectively allows preservation of the nanoporous aerogel structure and removes the organic solvent used for gel preparation. These characteristics are essential for cell adhesion and proliferation.

18.
Pharmaceutics ; 13(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922659

RESUMEN

In this work, Class 2 and Class 3 solvents contained in two corticosteroids, flunisolide (Fluni) and fluticasone propionate (Fluti), were reduced to a few ppm by supercritical CO2 extraction. The process was carried out at pressures from 80 to 200 bar, temperatures of 40 °C and 80 °C, and at a fixed CO2 flow rate of 0.7 kg/h. The results demonstrated that CO2 density is the key parameter influencing the extraction kinetics and the solvent final residue. In particular, in the range investigated, optimal pressure and temperature conditions for the extraction of residual organic solvents were found working at 200 bar and 40 °C, which corresponds to a CO2 density of 0.840 g/cm3. Operating in this way, total organic solvent residues were reduced from 13,671 ppm and 326 ppm to 12 ppm and 10 ppm for Fluni and Fluti, respectively.

19.
Materials (Basel) ; 13(7)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231004

RESUMEN

Antimicrobial composite membranes, formed by cellulose acetate loaded with AgNO3 particles, were produced by supercritical phase inversion. Different cellulose acetate concentrations were tested (15%, 20%, 30%(w/w)), whereas the active agent (i.e., silver nitrate) concentration was fixed at 0.1%(w/w) with respect to the quantity of polymer used. To determine the influence of the process parameters on membranes morphology, the pressure and temperature were varied from 150 to 250 bar and from 55 to 35 °C, respectively. In all cases, regularly porous membranes were produced with a uniform AgNO3 distribution in the membrane matrix. Silver release rate depended on membrane pore size, covering a time interval from 8 to 75 h.

20.
Carbohydr Polym ; 233: 115850, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32059901

RESUMEN

Chitosan aerogels were obtained after using supercritical carbon dioxide to dry physical hydrogels, studying the effect of the rheological behavior of hydrogels and solutions on the final aerogels properties. An increase on the solutions pseudoplasticity increased the subsequent hydrogels physical entanglement, without showing a significant effect on aerogels morphology (nanoporous) and textural properties (pores of about 10 nm). However, an increase of hydrogel physical entanglement promoted the formation of aerogels with a higher compressive strength (from 0.2 to 0.80 MPa) and higher thermal decomposition range, while decreasing the porosity (from 90 % to 94 %). Aerogels stress-strain responses were also successfully fitted using a hyperelastic equation with three adjustable parameters (Yeoh), showing that this type of models must be taken into account when large stresses are studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...