Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Neuroergon ; 5: 1283290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444841

RESUMEN

Functional near-infrared spectroscopy (fNIRS) is a widely used imaging method for mapping brain activation based on cerebral hemodynamics. The accurate quantification of cortical activation using fNIRS data is highly dependent on the ability to correctly localize the positions of light sources and photodetectors on the scalp surface. Variations in head size and shape across participants greatly impact the precise locations of these optodes and consequently, the regions of the cortical surface being reached. Such variations can therefore influence the conclusions drawn in NIRS studies that attempt to explore specific cortical regions. In order to preserve the spatial identity of each NIRS channel, subject-specific differences in NIRS array registration must be considered. Using high-density diffuse optical tomography (HD-DOT), we have demonstrated the inter-subject variability of the same HD-DOT array applied to ten participants recorded in the resting state. We have also compared three-dimensional image reconstruction results obtained using subject-specific positioning information to those obtained using generic optode locations. To mitigate the error introduced by using generic information for all participants, photogrammetry was used to identify specific optode locations per-participant. The present work demonstrates the large variation between subjects in terms of which cortical parcels are sampled by equivalent channels in the HD-DOT array. In particular, motor cortex recordings suffered from the largest optode localization errors, with a median localization error of 27.4 mm between generic and subject-specific optodes, leading to large differences in parcel sensitivity. These results illustrate the importance of collecting subject-specific optode locations for all wearable NIRS experiments, in order to perform accurate group-level analysis using cortical parcellation.

2.
Biomed Opt Express ; 15(1): 162-184, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223181

RESUMEN

This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.

3.
Clin Otolaryngol ; 49(1): 41-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37885344

RESUMEN

OBJECTIVES: To assess outcomes associated with photobiomodulation therapy (PBMT) for hearing loss in human and animal studies. DESIGN: Systematic review and narrative synthesis in accordance with PRISMA guidelines. SETTING: Data bases searched: MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov and Web of Science. No limits were placed on language or year of publication. Review conducted in accordance with the PRISMA 2020 statement. PARTICIPANTS: All human and animal subjects treated with PBMT for hearing loss. MAIN OUTCOME MEASURES: Pre- and post-PBMT audio metric outcomes. RESULTS: Searches identified 122 abstracts and 49 full text articles. Of these, 17 studies met the inclusion criteria, reporting outcomes in 327 animals (11 studies), 30 humans (1 study), and 40 animal specimens (5 studies). PBMT parameters included 6 different wavelengths: 908 nm (1 study), 810 nm (1 study), 532 & 635 nm (1 study), 830 nm (3 studies), 808 nm (11 studies). The duration ranged from 4 to 60 minutes in a session, and the follow-up ranged from 5-28 days. Outcomes improved significantly when wavelengths within the range of 800-830 nm were used, and with greater duration of PBMT exposure. Included studies predominantly consisted of non-randomized controlled trials (10 studies). CONCLUSIONS: Hearing outcomes following PBMT appear to be superior to no PBMT for subjects with hearing loss, although higher level evidence is required to verify this. PBMT enables concentrated, focused delivery of light therapy to the inner ear through a non-invasive manner with minimal side effects. As a result of heterogeneity in reporting PBMT parameters and outcomes across the included studies, direct comparison is challenging.


Asunto(s)
Pérdida Auditiva , Terapia por Luz de Baja Intensidad , Animales , Humanos , Audición , Pérdida Auditiva/radioterapia
4.
J Laryngol Otol ; : 1-22, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37994052

RESUMEN

OBJECTIVE: To establish outcomes following photobiomodulation therapy for tinnitus in humans and animal studies. METHODS: A systematic review and narrative synthesis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The databases searched were: Medline, Embase, Cochrane Central Register of Controlled Trials ('Central'), ClinicalTrials.gov and Web of Science including the Web of Science Core collection. There were no limits on language or year of publication. RESULTS: The searches identified 194 abstracts and 61 full texts. Twenty-eight studies met the inclusion criteria, reporting outcomes in 1483 humans (26 studies) and 34 animals (2 studies). Photobiomodulation therapy parameters included 10 different wavelengths, and duration ranged from 9 seconds to 30 minutes per session. Follow up ranged from 7 days to 6 months. CONCLUSION: Tinnitus outcomes following photobiomodulation therapy are generally positive and superior to no photobiomodulation therapy; however, evidence of long-term therapeutic benefit is deficient. Photobiomodulation therapy enables concentrated, focused delivery of light therapy to the inner ear through a non-invasive manner, with minimal side effects.

5.
Pediatr Res ; 94(5): 1675-1683, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37308684

RESUMEN

BACKGROUND: Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS: Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS: CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION: Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT: This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.


Asunto(s)
Hipoxia-Isquemia Encefálica , Lactante , Humanos , Animales , Porcinos , Hipoxia-Isquemia Encefálica/terapia , Neuroprotección , Biomarcadores , Encéfalo/metabolismo , Animales Recién Nacidos
6.
Ageing Res Rev ; 90: 101992, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356550

RESUMEN

This systematic review aimed to evaluate previous studies which used near-infrared spectroscopy (NIRS) in dementia given its suitability as a diagnostic and investigative tool in this population. From 800 identified records which used NIRS in dementia and prodromal stages, 88 studies were evaluated which employed a range of tasks testing memory (29), word retrieval (24), motor (8) and visuo-spatial function (4), and which explored the resting state (32). Across these domains, dementia exhibited blunted haemodynamic responses, often localised to frontal regions of interest, and a lack of task-appropriate frontal lateralisation. Prodromal stages, such as mild cognitive impairment, revealed mixed results. Reduced cognitive performance accompanied by either diminished functional responses or hyperactivity was identified, the latter suggesting a compensatory response not present at the dementia stage. Despite clear evidence of alterations in brain oxygenation in dementia and prodromal stages, a consensus as to the nature of these changes is difficult to reach. This is likely partially due to the lack of standardisation in optical techniques and processing methods for the application of NIRS to dementia. Further studies are required exploring more naturalistic settings and a wider range of dementia subtypes.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Espectroscopía Infrarroja Corta , Síntomas Prodrómicos , Encéfalo , Disfunción Cognitiva/diagnóstico
7.
Neurophotonics ; 10(2): 023514, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36788803

RESUMEN

Significance: Dementia presents a global healthcare crisis, and neuroimaging is the main method for developing effective diagnoses and treatments. Yet currently, there is a lack of sensitive, portable, and low-cost neuroimaging tools. As dementia is associated with vascular and metabolic dysfunction, near-infrared spectroscopy (NIRS) has the potential to fill this gap. Aim: This future perspective aims to briefly review the use of NIRS in dementia to date and identify the challenges involved in realizing the full impact of NIRS for dementia research, including device development, study design, and data analysis approaches. Approach: We briefly appraised the current literature to assess the challenges, giving a critical analysis of the methods used. To assess the sensitivity of different NIRS device configurations to the brain with atrophy (as is common in most forms of dementia), we performed an optical modeling analysis to compare their cortical sensitivity. Results: The first NIRS dementia study was published in 1996, and the number of studies has increased over time. In general, these studies identified diminished hemodynamic responses in the frontal lobe and altered functional connectivity in dementia. Our analysis showed that traditional (low-density) NIRS arrays are sensitive to the brain with atrophy (although we see a mean decrease of 22% in the relative brain sensitivity with respect to the healthy brain), but there is a significant improvement (a factor of 50 sensitivity increase) with high-density arrays. Conclusions: NIRS has a bright future in dementia research. Advances in technology - high-density devices and intelligent data analysis-will allow new, naturalistic task designs that may have more clinical relevance and increased reproducibility for longitudinal studies. The portable and low-cost nature of NIRS provides the potential for use in clinical and screening tests.

8.
Biomed Opt Express ; 14(1): 385-386, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36698666

RESUMEN

A feature issue is being presented by a team of guest editors containing papers based on studies presented at the Optica Biophotonics Congress: Biomedical Optics held on April 24-27, 2022 in Fort Lauderdale, Florida, USA.

9.
J Biomed Opt ; 27(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922891

RESUMEN

SIGNIFICANCE: Measurement and imaging of hemoglobin oxygenation are used extensively in the detection and diagnosis of disease; however, the applied instruments vary widely in their depth of imaging, spatiotemporal resolution, sensitivity, accuracy, complexity, physical size, and cost. The wide variation in available instrumentation can make it challenging for end users to select the appropriate tools for their application and to understand the relative limitations of different methods. AIM: We aim to provide a systematic overview of the field of hemoglobin imaging and sensing. APPROACH: We reviewed the sensing and imaging methods used to analyze hemoglobin oxygenation, including pulse oximetry, spectral reflectance imaging, diffuse optical imaging, spectroscopic optical coherence tomography, photoacoustic imaging, and diffuse correlation spectroscopy. RESULTS: We compared and contrasted the ability of different methods to determine hemoglobin biomarkers such as oxygenation while considering factors that influence their practical application. CONCLUSIONS: We highlight key limitations in the current state-of-the-art and make suggestions for routes to advance the clinical use and interpretation of hemoglobin oxygenation information.


Asunto(s)
Hemoglobinas , Oximetría , Hemoglobinas/análisis , Oximetría/métodos , Análisis Espectral/métodos , Tomografía de Coherencia Óptica/métodos
10.
J Biomed Opt ; 27(7)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35701869

RESUMEN

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Asunto(s)
Laboratorios , Óptica y Fotónica , Fantasmas de Imagen , Reproducibilidad de los Resultados , Análisis Espectral
11.
Adv Exp Med Biol ; 1269: 203-208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966218

RESUMEN

This is the first multimodal study of cerebral tissue metabolism and perfusion post-hypoxic-ischaemic (HI) brain injury using broadband near-infrared spectroscopy (bNIRS), diffuse correlation spectroscopy (DCS), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). In seven piglet preclinical models of neonatal HI, we measured cerebral tissue saturation (StO2), cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), changes in the mitochondrial oxidation state of cytochrome c oxidase (oxCCO), cerebral glucose metabolism (CMRglc) and tissue biochemistry (Lac+Thr/tNAA). At baseline, the parameters measured in the piglets that experience HI (not controls) were 64 ± 6% StO2, 35 ± 11 ml/100 g/min CBF and 2.0 ± 0.4 µmol/100 g/min CMRO2. After HI, the parameters measured were 68 ± 6% StO2, 35 ± 6 ml/100 g/min CBF, 1.3 ± 0.1 µmol/100 g/min CMRO2, 0.4 ± 0.2 Lac+Thr/tNAA and 9.5 ± 2.0 CMRglc. This study demonstrates the capacity of a multimodal set-up to interrogate the pathophysiology of HIE using a combination of optical methods, MRS, and PET.


Asunto(s)
Hipoxia-Isquemia Encefálica , Animales , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Oxígeno , Consumo de Oxígeno , Perfusión , Espectroscopía Infrarroja Corta , Porcinos
13.
Biomed Opt Express ; 12(2): 907-925, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33680549

RESUMEN

Tissue oximetry with near-infrared spectroscopy (NIRS) is a technique for the measurement of absolute tissue oxygen saturation (StO2). Offering a real-time and non-invasive assessment of brain oxygenation and haemodynamics, StO2 has potential to be used for the assessment of newborn brain injury. Multiple algorithms have been developed to measure StO2, however, issues with low measurement accuracy or extracranial tissue signal contamination remain. In this work, we present a novel algorithm to recover StO2 in the neonate, broadband multidistance oximetry (BRUNO), based on a measurement of the gradient of attenuation against distance measured with broadband NIRS. The performance of the algorithm was compared to two other published algorithms, broadband fitting (BF) and spatially resolved spectroscopy (SRS). The median error when recovering StO2 in light transport simulations on a neonatal head mesh was 0.4% with BRUNO, 4.2% with BF and 9.5% with SRS. BRUNO was more sensitive to brain tissue oxygenation changes, shown in layered head model simulations. Comparison of algorithm performance during full oxygenation-deoxygenation cycles in a homogeneous dynamic blood phantom showed significant differences in the dynamic range of the algorithms; BRUNO recovered StO2 over 0-100%, BF over 0-90% and SRS over 39-80%. Recovering StO2 from data collected in a neonate treated at the neonatal intensive care showed different baseline values; mean StO2 was 64.9% with BRUNO, 67.2% with BF and 73.2% with SRS. These findings highlight the effect of StO2 algorithm selection on oxygenation recovery; applying BRUNO in the clinical care setting could reveal further insight into complex haemodynamic processes occurring during neonatal brain injury.

14.
Physiol Rep ; 8(17): e14548, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32889790

RESUMEN

Neonatal monitoring in neonatal intensive care is pushing the technological boundaries of newborn brain monitoring in order to improve patient outcome. There is an urgent need of a cot side, real time monitoring for assessment of brain injury severity and neurodevelopmental outcome, in particular for term newborn infants with hypoxic-ischemic brain injury. This topical review discusses why brain tissue metabolic monitoring is important in this group of infants and introduces the currently used neuromonitoring techniques for metabolic monitoring in the neonatal intensive care unit (NICU). New optical techniques that can monitor changes in brain metabolism together with brain hemodynamics at the cot side are presented. Early studies from these emerging technologies have demonstrated their potential to deliver continuous information regarding cerebral physiological changes in sick newborn infants in real time. The promises of these new tools as well as their potential limitations are discussed.


Asunto(s)
Encéfalo/metabolismo , Cuidado Intensivo Neonatal/métodos , Monitorización Neurofisiológica/métodos , Espectroscopía Infrarroja Corta/métodos , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagen , Electroencefalografía/métodos , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos
15.
Artery Res ; 26(3): 170-179, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32879639

RESUMEN

The commonest causes of dementia are Alzheimer's disease and vascular cognitive impairment. Although these conditions have been viewed as distinct entities, there is increasing evidence that neurodegenerative and vascular pathologies interact or overlap to cause cognitive decline, and that at least in some cases individuals at risk of cognitive decline exhibit abnormal cardiovascular physiology long before emergence of disease. However, the mechanisms linking haemodynamic disturbances with cognitive impairment and the various pathologies that cause dementia are poorly understood. A sub-sample of 502 participants from the Medical Research Council National Survey of Health and Development (NSHD) have participated in the first visit of a neuroscience sub-study referred to as Insight 46, where clinical, cognitive, imaging, and lifestyle data have been collected for the purpose of elucidating the pathological changes preceding dementia. This paper outlines the cardiovascular phenotyping performed in the follow-up visit of Insight 46, with the study participants now aged 74. In addition to standard cardiovascular assessments such as blood pressure measurements, echocardiography, and electrocardiography (ECG), functional Near Infrared Spectroscopy (fNIRS) has been included to provide an assessment of cerebrovascular function. A detailed description of the fNIRS protocol along with preliminary results from pilot data is presented. The combination of lifestyle data, brain structure/function, cognitive performance, and cardiovascular health obtained not only from Insight 46, but also from the whole NSHD provides an exciting opportunity to advance our understanding of the cardiovascular mechanisms underlying dementia and cognitive decline, and identify novel targets for intervention.

16.
Adv Exp Med Biol ; 1232: C1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32638345

RESUMEN

This chapter was inadvertently published as an open access chapter. However, the open access for this chapter has now been reverted.

17.
Front Neurol ; 11: 393, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536901

RESUMEN

Background: Neonatal hypoxic ischemic encephalopathy (HIE) remains a significant cause of mortality and morbidity worldwide. Cerebral near infrared spectroscopy (NIRS) can provide cot side continuous information about changes in brain hemodynamics, oxygenation and metabolism in real time. Objective: To perform a systematic review of cerebral NIRS monitoring in term and near-term infants with HIE. Search Methods: A systematic search was performed in Ovid EMBASE and Medline database from inception to November 2019. The search combined three broad categories: measurement (NIRS monitoring), disease condition [hypoxic ischemic encephalopathy (HIE)] and subject category (newborn infants) using a stepwise approach as per PRISMA guidance. Selection Criteria: Only human studies published in English were included. Data Collection and Analysis: Two authors independently selected, assessed the quality, and extracted data from the studies for this review. Results: Forty-seven studies on term and near-term infants following HIE were identified. Most studies measured multi-distance NIRS based cerebral tissue saturation using monitors that are referred to as cerebral oximeters. Thirty-nine studies were published since 2010; eight studies were published before this. Fifteen studies reviewed the neurodevelopmental outcome in relation to NIRS findings. No randomized study was identified. Conclusion: Commercial NIRS cerebral oximeters can provide important information regarding changes in cerebral oxygenation and hemodynamics following HIE and can be particularly helpful when used in combination with other neuromonitoring tools. Optical measurements of brain metabolism using broadband NIRS and cerebral blood flow using diffuse correlation spectroscopy add additional pathophysiological information. Further randomized clinical trials and large observational studies are necessary with proper study design to assess the utility of NIRS in predicting neurodevelopmental outcome and guiding therapeutic interventions.

18.
Adv Exp Med Biol ; 1232: 3-9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893387

RESUMEN

Neonates with hypoxic-ischaemic (HI) brain injury were monitored using a broadband near-infrared spectroscopy (NIRS) system in the neonatal intensive care unit. The aim of this work is to use the NIRS cerebral oxygenation data (HbD = oxygenated-haemoglobin - deoxygenated-haemoglobin) combined with arterial saturation (SaO2) from pulse oximetry to calculate cerebral blood flow (CBF) based on the oxygen swing method, during spontaneous desaturation episodes. The method is based on Fick's principle and uses HbD as a tracer; when a sudden change in SaO2 occurs, the change in HbD represents a change in tracer concentration, and thus it is possible to estimate CBF. CBF was successfully calculated with broadband NIRS in 11 HIE infants (3 with severe injury) for 70 oxygenation events on the day of birth. The average CBF was 18.0 ± 12.7 ml 100 g-1 min-1 with a range of 4 ml 100 g-1 min-1 to 60 ml 100 g-1 min-1. For infants with severe HIE (as determined by magnetic resonance spectroscopy) CBF was significantly lower (p = 0.038, d = 1.35) than those with moderate HIE on the day of birth.


Asunto(s)
Lesiones Encefálicas , Encéfalo , Circulación Cerebrovascular , Oximetría , Oxígeno , Espectroscopía Infrarroja Corta , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Lesiones Encefálicas/diagnóstico por imagen , Humanos , Recién Nacido , Oximetría/instrumentación , Oximetría/métodos , Oxígeno/metabolismo
19.
Adv Exp Med Biol ; 1232: 25-31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893390

RESUMEN

Hypoxic ischemic encephalopathy (HIE) leads to significant mortality and morbidity, and therapeutic hypothermia (TH) has become a standard of care following HIE. After TH, the body temperature is brought back to 37 °C. Early electroencephalography (EEG) is a reliable outcome biomarker following HIE. We hypothesized that changes in cerebral oxidative metabolism, measured as Δ[oxCCO], in relation to changes in brain tissue oxygenation (measured as Δ[HbD]) during rewarming will correlate with injury severity as evidenced on amplitude integrated EEG/EEG at initial presentation. Broadband near-infrared spectroscopy (NIRS) and systemic data were collected during rewarming from 14 infants following HIE over a mean period of 12.5 h. All infants were monitored with video EEG telemetry using a standard neonatal montage. aEEG and EEG background was classified into mild, moderate and severely abnormal groups based on the background pattern. Two infants had mild, 6 infants had moderate and another 6 infants had severe abnormality at presentation. The relationship between [oxCCO] and [HbD] was evaluated between two groups of infants with abnormal electrical activity (mild vs moderate to severe). A significant difference was noted between the groups in the relationship between [oxCCO] and [HbD] (as r2) (p = 0.02). This result indicates that the mitochondrial injury and deranged oxidative metabolism persists in the moderate to severely abnormal group during rewarming.


Asunto(s)
Electroencefalografía , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Biomarcadores/análisis , Encéfalo/metabolismo , Humanos , Hipoxia-Isquemia Encefálica/diagnóstico , Lactante , Recién Nacido , Recalentamiento
20.
Adv Exp Med Biol ; 1232: 245-251, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893417

RESUMEN

Skeletal muscle metabolic function is known to respond positively to endurance exercise interventions, such as marathon training. Studies investigating skeletal muscle have typically used muscle biopsy samples or magnetic resonance spectroscopy (MRS) to interrogate metabolic function. We aimed to non-invasively detect exercise-training-induced improvements in muscle function using broadband near-infrared spectroscopy (NIRS). We used NIRS to determine concentration changes in oxygenated haemoglobin (HbO2) and the oxidation state of cytochrome-c-oxidase (oxCCO) in gastrocnemius during arterial occlusion in 14 volunteers. We also used a cardio-pulmonary exercise test (CPET) to assess peak total body oxygen uptake (peakVO2; a measure of fitness). Measurements were made at baseline (BL) which was prior to a period of at least 16 weeks of training for the 2017 London Marathon, and then within 3 weeks after completion of the marathon, follow-up (FU). We observed an increase in locally measured muscle oxygen consumption and rate of oxCCO concentration change, but not in cardio-respiratory fitness measured as whole-body peak oxygen consumption (peakVO2).


Asunto(s)
Músculo Esquelético , Consumo de Oxígeno , Carrera , Espectroscopía Infrarroja Corta , Adulto , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Oxihemoglobinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...