Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Biol Psychiatry ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821195

RESUMEN

BACKGROUND: Adverse childhood experiences (ACEs) increase risk for mental illness in women and their children, and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis may play a role. The impact of ACEs on the HPA axis may be strongest when ACEs occur prepubertally and in those exposed to abuse ACEs. METHODS: To test this, we measured salivary cortisol in 96 mother-infant dyads while mothers were separated from their infant experiencing a laboratory stressor. Mothers completed the ACE questionnaire, ACEs occurring prepubertally (pACEs) were measured, and mother-infant dyads were grouped based on maternal pACE history: no pACEs, 1+ pACEs with abuse, or 1+ pACEs but no abuse. RESULTS: Mothers with 1+ pACEs exhibited decreases in cortisol (relative to pre-infant stressor), which differed significantly from the cortisol increase mothers with no pACEs experienced, regardless of abuse presence (p=.001) or absence (p=.002). These 1+ pACE groups did not differ from one another (p=.929). Significant sex differences in infant cortisol were observed in infants of mothers with 1+ pACEs (regardless of abuse) but not in infants of mothers with no pACEs. When mothers had 1+ pACEs, males showed decreases in cortisol in response to a stressor whereas females demonstrated increases, and males and females differed significantly when their mothers had 1+ pACEs with (p=0.025) and without (p=0.032) abuse. CONCLUSIONS: Regardless of maternal exposure to childhood abuse, in response to a stressor, prepubertal ACEs were associated with lower cortisol response in mothers and sex differences in six-month-old infants, with males showing a lower cortisol response than females.

2.
Biol Reprod ; 110(2): 339-354, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37971364

RESUMEN

Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.


Asunto(s)
Placenta , Aumento de Peso , Humanos , Embarazo , Ratones , Femenino , Masculino , Animales , Placenta/metabolismo , Feto/metabolismo , Transducción de Señal , Dieta Alta en Grasa/efectos adversos
3.
Neuropsychopharmacology ; 49(2): 443-454, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37833589

RESUMEN

Trauma and chronic stress exposure are the strongest predictors of lifetime neuropsychiatric disease presentation. These disorders often have significant sex biases, with females having higher incidences of affective disorders such as major depression, anxiety, and PTSD. Understanding the mechanisms by which stress exposure heightens disease vulnerability is essential for developing novel interventions. Current rodent stress models consist of a battery of sensory, homeostatic, and psychological stressors that are ultimately integrated by corticotropin-releasing factor (CRF) neurons to trigger corticosteroid release. These stress paradigms, however, often differ between research groups in the type, timing, and duration of stressors utilized. These inconsistencies, along with the variability of individual animals' perception and response to each stressor, present challenges for reproducibility and translational relevance. Here, we hypothesized that a more direct approach using chemogenetic activation of CRF neurons would recapitulate the effects of traditional stress paradigms and provide a high-throughput method for examining stress-relevant phenotypes. Using a transgenic approach to express the Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor hM3Dq in CRF-neurons, we found that the DREADD ligand clozapine-N-oxide (CNO) produced an acute and robust activation of the hypothalamic-pituitary-adrenal (HPA) axis, as predicted. Interestingly, chronic treatment with this method of direct CRF activation uncovered a novel sex-specific dissociation of glucocorticoid levels with stress-related outcomes. Despite hM3Dq-expressing females producing greater corticosterone levels in response to CNO than males, hM3Dq-expressing males showed significant typical physiological stress sensitivity with reductions in body and thymus weights. hM3Dq-expressing females while resistant to the physiological effects of chronic CRF activation, showed significant increases in baseline and fear-conditioned freezing behaviors. These data establish a novel mouse model for interrogating stress-relevant phenotypes and highlight sex-specific stress circuitry distinct for physiological and limbic control that may underlie disease risk.


Asunto(s)
Hormona Liberadora de Corticotropina , Neuronas , Ratones , Masculino , Animales , Femenino , Hormona Liberadora de Corticotropina/farmacología , Reproducibilidad de los Resultados , Ansiedad , Miedo
4.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38106154

RESUMEN

Generating animal models for individual patients within clinically-useful timeframes holds great potential toward enabling personalized medicine approaches for genetic epilepsies. The ability to rapidly incorporate patient-specific genomic variants into model animals recapitulating elements of the patient's clinical manifestations would enable applications ranging from validation and characterization of pathogenic variants to personalized models for tailoring pharmacotherapy to individual patients. Here, we demonstrate generation of an animal model of an individual epilepsy patient with an ultra-rare variant of the NMDA receptor subunit GRIN2A, without the need for germline transmission and breeding. Using in utero prime editing in the brain of wild-type mice, our approach yielded high in vivo editing precision and induced frequent, spontaneous seizures which mirrored specific elements of the patient's clinical presentation. Leveraging the speed and versatility of this approach, we introduce PegAssist, a generalizable workflow to generate bedside-to-bench animal models of individual patients within weeks. The capability to produce individualized animal models rapidly and cost-effectively will reduce barriers to access for precision medicine, and will accelerate drug development by offering versatile in vivo platforms to identify compounds with efficacy against rare neurological conditions.

5.
Sci Adv ; 9(45): eadf6251, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939194

RESUMEN

The development and diversity of neuronal subtypes in the human hypothalamus has been insufficiently characterized. To address this, we integrated transcriptomic data from 241,096 cells (126,840 newly generated) in the prenatal and adult human hypothalamus to reveal a temporal trajectory from proliferative stem cell populations to mature hypothalamic cell types. Iterative clustering of the adult neurons identified 108 robust transcriptionally distinct neuronal subtypes representing 10 hypothalamic nuclei. Pseudotime trajectories provided insights into the genes driving formation of these nuclei. Comparisons to single-cell transcriptomic data from the mouse hypothalamus suggested extensive conservation of neuronal subtypes despite certain differences in species-enriched gene expression. The uniqueness of hypothalamic neuronal lineages was examined developmentally by comparing excitatory lineages present in cortex and inhibitory lineages in ganglionic eminence, revealing both distinct and shared drivers of neuronal maturation across the human forebrain. These results provide a comprehensive transcriptomic view of human hypothalamus development through gestation and adulthood at cellular resolution.


Asunto(s)
Hipotálamo , Neuronas , Ratones , Animales , Humanos , Hipotálamo/metabolismo , Neuronas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Genómica
6.
Sci Rep ; 13(1): 21082, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030664

RESUMEN

The genetic material encoded on X and Y chromosomes provides the foundation by which biological sex differences are established. Epigenetic regulators expressed on these sex chromosomes, including Kdm6a (Utx), Kdm5c, and Ddx3x have far-reaching impacts on transcriptional control of phenotypic sex differences. Although the functionality of UTY (Kdm6c, the Y-linked homologue of UTX), has been supported by more recent studies, its role in developmental sex differences is not understood. Here we test the hypothesis that UTY is an important transcriptional regulator during development that could contribute to sex-specific phenotypes and disease risks across the lifespan. We generated a random insertion Uty transgenic mouse (Uty-Tg) to overexpress Uty. By comparing transcriptomic profiles in developmental tissues, placenta and hypothalamus, we assessed potential UTY functional activity, comparing Uty-expressing female mice (XX + Uty) with wild-type male (XY) and female (XX) mice. To determine if Uty expression altered physiological or behavioral outcomes, adult mice were phenotypically examined. Uty expression masculinized female gene expression patterns in both the placenta and hypothalamus. Gene ontology (GO) and gene set enrichment analysis (GSEA) consistently identified pathways including immune and synaptic signaling as biological processes associated with UTY. Interestingly, adult females expressing Uty gained less weight and had a greater glucose tolerance compared to wild-type male and female mice when provided a high-fat diet. Utilizing a Uty-overexpressing transgenic mouse, our results provide novel evidence as to a functional transcriptional role for UTY in developing tissues, and a foundation to build on its prospective capacity to influence sex-specific developmental and health outcomes.


Asunto(s)
Regulación de la Expresión Génica , Transcriptoma , Masculino , Femenino , Animales , Ratones , Estudios Prospectivos , Perfilación de la Expresión Génica , Ratones Transgénicos
7.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831056

RESUMEN

Compelling epidemiological and animal experimental data demonstrate that cardiometabolic and neuropsychiatric diseases originate in a suboptimal intrauterine environment. Here, we review evidence suggesting that altered placental function may, at least in part, mediate the link between the maternal environment and changes in fetal growth and development. Emerging evidence indicates that the placenta controls the development and function of several fetal tissues through nutrient sensing, modulation of trophoblast nutrient transporters and by altering the number and cargo of released extracellular vesicles. In this Review, we discuss the development and functions of the maternal-placental-fetal interface (in humans and mice) and how cross-talk between these compartments may be a mechanism for in utero programming, focusing on mechanistic target of rapamycin (mTOR), adiponectin and O-GlcNac transferase (OGT) signaling. We also discuss how maternal diet and stress influences fetal development and metabolism and how fetal growth restriction can result in susceptibility to developing chronic disease later in life. Finally, we speculate how interventions targeting placental function may offer unprecedented opportunities to prevent cardiometabolic disease in future generations.


Asunto(s)
Desarrollo Fetal , Placenta , Embarazo , Femenino , Humanos , Ratones , Animales , Placenta/metabolismo , Trofoblastos/metabolismo , Transducción de Señal , Retardo del Crecimiento Fetal
8.
Sci Rep ; 13(1): 4568, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941297

RESUMEN

Homeostatic regulation of the maternal milieu during pregnancy is critical for maternal and fetal health. The placenta facilitates critical communication between maternal and fetal compartments, in part, through the production of extracellular vesicles (EVs). EVs enable tissue synchrony via cell-cell and long-distance communication and are at their highest circulating concentration during pregnancy. While much work has been done investigating how physiological challenges in pregnancy affect the fetus, the role of placental communication in maternal health has not been well examined. We previously identified placental O-glycosyl transferase (OGT), a glucose-sensing enzyme, as a target of maternal stress where OGT levels and activity affected the O-glycosylation of proteins critical for EV cargo loading and secretion. Here, we hypothesized that placental OGT plays an essential role in maternal homeostatic regulation during pregnancy via its regulation of maternal circulating EV concentrations. Our studies found that changes to key metabolic factors over the circadian cycle, including glucocorticoids, insulin, and glucose, were significantly associated with changes in circulating EV concentration. Targeting placental OGT in mice, we found a novel significant positive relationship between placental OGT and maternal circulating EV concentration that was associated with improving maternal glucose tolerance during pregnancy. Finally, an intravenous elevation in EVs, matching the concentration of EVs during pregnancy, shifted non-pregnant female glucose sensitivity, blunted glucose variance, and improved synchrony of glucose uptake. These data suggest an important and novel role for circulating EVs as homeostatic regulators important in maternal health during pregnancy.


Asunto(s)
Vesículas Extracelulares , Placenta , Embarazo , Femenino , Animales , Ratones , Placenta/metabolismo , Vesículas Extracelulares/metabolismo , Feto , Glucosa/metabolismo , Homeostasis
9.
Biol Sex Differ ; 14(1): 7, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36803442

RESUMEN

BACKGROUND: The mechanisms by which parental early life stress can be transmitted to the next generation, in some cases in a sex-specific manner, are unclear. Maternal preconception stress may increase susceptibility to suboptimal health outcomes via in utero programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis. METHODS: We recruited healthy pregnant women (N = 147), dichotomized into low (0 or 1) and high (2+) adverse childhood experience (ACE) groups based on the ACE Questionnaire, to test the hypothesis that maternal ACE history influences fetal adrenal development in a sex-specific manner. At a mean (standard deviation) of 21.5 (1.4) and 29.5 (1.4) weeks gestation, participants underwent three-dimensional ultrasounds to measure fetal adrenal volume, adjusting for fetal body weight (waFAV). RESULTS: At ultrasound 1, waFAV was smaller in high versus low ACE males (b = - 0.17; z = - 3.75; p < .001), but females did not differ significantly by maternal ACE group (b = 0.09; z = 1.72; p = .086). Compared to low ACE males, waFAV was smaller for low (b = - 0.20; z = - 4.10; p < .001) and high ACE females (b = - 0.11; z = 2.16; p = .031); however, high ACE males did not differ from low (b = 0.03; z = .57; p = .570) or high ACE females (b = - 0.06; z = - 1.29; p = .196). At ultrasound 2, waFAV did not differ significantly between any maternal ACE/offspring sex subgroups (ps ≥ .055). Perceived stress did not differ between maternal ACE groups at baseline, ultrasound 1, or ultrasound 2 (ps ≥ .148). CONCLUSIONS: We observed a significant impact of high maternal ACE history on waFAV, a proxy for fetal adrenal development, but only in males. Our observation that the waFAV in males of mothers with a high ACE history did not differ from the waFAV of females extends preclinical research demonstrating a dysmasculinizing effect of gestational stress on a range of offspring outcomes. Future studies investigating intergenerational transmission of stress should consider the influence of maternal preconception stress on offspring outcomes.


Asunto(s)
Experiencias Adversas de la Infancia , Masculino , Humanos , Femenino , Embarazo , Feto/diagnóstico por imagen , Sistema Hipotálamo-Hipofisario , Edad Gestacional
10.
Sci Rep ; 13(1): 707, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639735

RESUMEN

Extracellular vesicles (EVs) are a unique mode of intercellular communication capable of specificity in transmitting signals and cargo to coordinate local and distant cellular functions. A key example of this is the essential role that EVs secreted by epithelial cells lining the lumen of the male reproductive tract play in post-spermatogenic sperm maturation. We recently showed in a preclinical mouse model that this fundamental process had a causal role in somatic-to-germline transmission of biological information regarding prior stress experience capable of altering the rate of fetal development. However, critical mechanistic questions remain unanswered as to the processes by which signaling occurs between EVs and sperm, and whether EVs or their cargo are delivered at conception and are detectable in the early embryo. Unfortunately, notable methodological limitations shared across EV biology, particularly in the isolation and labeling of EVs, complicate efforts to answer these important questions as well as questions on EV targeting specificity and mechanisms. In our current studies, we developed a novel approach to track EVs using a conditional transgenic construct designed to label EVs via conditional Cre-induced hemagglutinin (HA) tagging of the EV endogenous tetraspanin, CD63. In our exhaustive validation steps, this internal small molecular weight tag did not affect EV secretion or functionality, a common problem found in the previous design of EV tags using larger molecular weight proteins, including fluorescent proteins. Utilizing a stably transfected immortalized epididymal epithelial cell line, we first validated key parameters of the conditional HA-tagged protein packaged into secreted EVs. Importantly, we systematically confirmed that expression of the CD63-HA had no impact on the production, size distribution, or surface charge of secreted EVs, nor did it alter the tetraspanin or miRNA composition of these EVs. We also utilized the CD63-HA EVs to verify physical interactions with sperm. Finally, using in vitro fertilization we produced some of the first images confirming sperm delivered EV cargo at conception and still detectable in the early-stage embryo. As such, this construct serves as a methodological advance and as a valuable tool, with applications in the study of EV function across biomedical research areas.


Asunto(s)
Vesículas Extracelulares , Hemaglutininas , Masculino , Animales , Ratones , Hemaglutininas/metabolismo , Semen , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Animales Modificados Genéticamente , Tetraspaninas/metabolismo , Espermatozoides
12.
J Physiol ; 600(20): 4417-4418, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36190177
13.
Neurobiol Stress ; 20: 100473, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35982732

RESUMEN

The hippocampus exerts inhibitory feedback on the release of glucocorticoids. Because the major hippocampal efferent projections are excitatory, it has been hypothesized that this inhibition is mediated by populations of inhibitory neurons in the hypothalamus or elsewhere. These regions would be excited by hippocampal efferents and project to corticotropin-releasing factor (CRF) cells in the paraventricular nucleus of the hypothalamus (PVN). A direct demonstration of the synaptic responses elicited by hippocampal outputs in PVN cells or upstream GABAergic interneurons has not been provided previously. Here, we used viral vectors to express channelrhodopsin (ChR) and enhanced yellow fluorescent protein (EYFP) in pyramidal cells in the ventral hippocampus (vHip) in mice expressing tdTomato in GABA- or CRF-expressing neurons. We observed dense innervation of the bed nucleus of the stria terminalis (BNST) by labeled vHip axons and sparse labeling within the PVN. Using whole-cell voltage-clamp recording in parasagittal brain slices containing the BNST and PVN, photostimulation of vHip terminals elicited rapid excitatory postsynaptic currents (EPSCs) and longer-latency inhibitory postsynaptic currents (IPSCs) in both CRF+ and GAD + cells. The ratio of synaptic excitation and inhibition was maintained in CRF + cells during 20 Hz stimulus trains. Photostimulation of hippocampal afferents to the BNST and PVN in vivo inhibited the rise in blood glucocorticoid levels produced by acute restraint stress. We thus provide functional evidence suggesting that hippocampal output to the BNST contributes to a net inhibition of the hypothalamic-pituitary axis, providing further mechanistic insights into this process using methods with enhanced spatial and temporal resolution.

14.
Biol Psychiatry ; 91(3): 273-282, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715991

RESUMEN

BACKGROUND: Exposure to traumatic events is a risk factor for negative physical and mental health outcomes. However, the underlying biological mechanisms that perpetuate these lasting effects are not known. METHODS: We investigated the impact and timing of sexual trauma, a specific type of interpersonal violence, experienced during key developmental windows of childhood, adolescence, or adulthood on adult health outcomes and associated biomarkers, including circulating cell-free mitochondrial DNA levels and extracellular vesicles (EVs), in a predominantly Black cohort of women (N = 101). RESULTS: Significant changes in both biomarkers examined, circulating cell-free mitochondrial DNA levels and EV proteome, were specific to developmental timing of sexual trauma. Specifically, we identified a large number of keratin-related proteins from EVs unique to the adolescent sexual trauma group. Remarkably, the majority of these keratin proteins belong to a 17q21 gene cluster, which suggests a potential local epigenetic regulatory mechanism altered by adolescent trauma to impact keratinocyte EV secretion or its protein cargo. These results, along with changes in fear-potentiated startle and skin conductance detected in these women, suggest that sexual violence experienced during the specific developmental window of adolescence may involve unique programming of the skin, the body's largest stress organ. CONCLUSIONS: Together, these descriptive studies provide novel insight into distinct biological processes altered by trauma experienced during specific developmental windows. Future studies will be required to mechanistically link these biological processes to health outcomes.


Asunto(s)
Vesículas Extracelulares , Proteoma , Adolescente , Adulto , Estudios de Cohortes , Femenino , Humanos , Violencia
15.
Nat Commun ; 12(1): 6289, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725359

RESUMEN

Newborns are colonized by maternal microbiota that is essential for offspring health and development. The composition of these pioneer communities exhibits individual differences, but the importance of this early-life heterogeneity to health outcomes is not understood. Here we validate a human microbiota-associated model in which fetal mice are cesarean delivered and gavaged with defined human vaginal microbial communities. This model replicates the inoculation that occurs during vaginal birth and reveals lasting effects on offspring metabolism, immunity, and the brain in a community-specific manner. This microbial effect is amplified by prior gestation in a maternal obesogenic or vaginal dysbiotic environment where placental and fetal ileum development are altered, and an augmented immune response increases rates of offspring mortality. Collectively, we describe a translationally relevant model to examine the defined role of specific human microbial communities on offspring health outcomes, and demonstrate that the prenatal environment dramatically shapes the postnatal response to inoculation.


Asunto(s)
Microbioma Gastrointestinal , Relaciones Materno-Fetales/fisiología , Microbiota , Parto/fisiología , Efectos Tardíos de la Exposición Prenatal/microbiología , Vagina/microbiología , Animales , Cesárea/métodos , Femenino , Humanos , Recién Nacido , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología , Transcriptoma
16.
Front Hum Neurosci ; 15: 642762, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322003

RESUMEN

Exposure to stress can accelerate maturation and hasten reproduction. Although potentially adaptive, the trade-off is higher risk for morbidity and mortality. In humans, the intergenerational effects of stress have been demonstrated, but the precise mechanisms are unknown. Strikingly, even if parental stress occurs prior to conception, as adults, their offspring show worse mental and physical health. Emerging evidence primarily from preclinical models suggests that epigenetic programming may encode preconception stress exposures in germ cells, potentially impacting the phenotype of the offspring. In this narrative review, we evaluate the strength of the evidence for this mechanism across animals and humans in both males and females. The strongest evidence comes from studies of male mice, in which paternal preconception stress is associated with a host of phenotypic changes in the offspring and stress-induced changes in the small non-coding RNA content in sperm have been implicated. Two recent studies in men provide evidence that some small non-coding RNAs in sperm are responsive to past and current stress, including some of the same ones identified in mice. Although preliminary evidence suggests that findings from mice may map onto men, the next steps will be (1) considering whether stress type, severity, duration, and developmental timing affect germ cell epigenetic markers, (2) determining whether germ cell epigenetic markers contribute to disease risk in the offspring of stress-exposed parents, and (3) overcoming methodological challenges in order to extend this research to females.

17.
Anim Microbiome ; 3(1): 37, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975649

RESUMEN

BACKGROUND: For more than 30 years, the tetracycline on/off system of inducible gene expression has been leveraged to study disease mechanisms across many research areas, especially that of metabolism and neuroscience. This system requires acute or chronic exposure to tetracycline derivatives, such as doxycycline, to manipulate gene expression in a temporal and tissue-specific manner, with exposure often being restricted to gestational and early developmental windows. Despite evidence showing that early life antibiotic exposure has adverse effects on gut microbiota, metabolism, physiology, immunity and behavior, little is known regarding the lasting impact of doxycycline treatment on relevant outcomes in experimental offspring. RESULTS: To examine the hypothesis that early life doxycycline exposure produces effects on offspring growth, behavior, and gut microbiota, we employed the most commonly used method for tetracycline on/off system by administering a low dose of doxycycline (0.5 mg/ml) in the drinking water to C57Bl/6J and C57BL/6J:129S1/SvImJ dams from embryonic day 15.5 to postnatal day 28. Developmental exposure to low dose doxycycline resulted in significant alterations to growth trajectories and body weight in both strains, which persisted beyond cessation of doxycycline exposure. Developmental doxycycline exposure influenced offspring bacterial community assembly in a temporal and sex-specific manner. Further, gut microbiota composition failed to recover by adulthood, suggesting a lasting imprint of developmental antibiotic exposure. CONCLUSIONS: Our results demonstrated that early life doxycycline exposure shifts the homeostatic baseline of prior exposed animals that may subsequently impact responses to experimental manipulations. These results highlight the gut microbiota as an important factor to consider in systems requiring methods of chronic antibiotic administration during pregnancy and critical periods of postnatal development.

19.
Sci Rep ; 10(1): 17498, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060642

RESUMEN

Epidemiological studies from the last century have drawn strong associations between paternal life experiences and offspring health and disease outcomes. Recent studies have demonstrated sperm small non-coding RNA (sncRNA) populations vary in response to diverse paternal insults. However, for studies in retrospective or prospective human cohorts to identify changes in paternal germ cell epigenetics in association with offspring disease risk, a framework must first be built with insight into the expected biological variation inherent in human populations. In other words, how will we know what to look for if we don't first know what is stable and what is dynamic, and what is consistent within and between men over time? From sperm samples from a 'normative' cohort of healthy human subjects collected repeatedly from each subject over 6 months, 17 healthy male participants met inclusion criteria and completed donations and psychological evaluations of perceived stress monthly. sncRNAs (including miRNA, piRNA, and tRNA) isolated from mature sperm from these samples were subjected to Illumina small RNA sequencing, aligned to subtype-specific reference transcriptomes, and quantified. The repeated measures design allowed us to define both within- and between-subject variation in the expression of 254 miRNA, 194 tRNA, and 937 piRNA in sperm over time. We developed screening criteria to identify a subset of potential environmentally responsive 'dynamic' sperm sncRNA. Implementing complex modeling of the relationships between individual dynamic sncRNA and perceived stress states in these data, we identified 5 miRNA (including let-7f-5p and miR-181a-5p) and 4 tRNA that are responsive to the dynamics of prior stress experience and fit our established mouse model. In the current study, we aligned repeated sampling of human sperm sncRNA expression data with concurrent measures of perceived stress as a novel framework that can now be applied across a range of studies focused on diverse environmental factors able to influence germ cell programming and potentially impact offspring development.


Asunto(s)
ARN Pequeño no Traducido/genética , Espermatozoides/metabolismo , Transcriptoma , Adulto , Estudios de Cohortes , Epigénesis Genética , Humanos , Masculino , MicroARNs/metabolismo , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Investigación Biomédica Traslacional , Adulto Joven
20.
Placenta ; 100: 164-170, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32980048

RESUMEN

INTRODUCTION: Despite a wealth of epidemiological evidence that cumulative parental lifetime stress experiences prior to conception are determinant of offspring developmental trajectories, there is a lack of insight on how these previous stress experiences are stored and communicated intergenerationally. Preconception experiences may impact offspring development through alterations in transcriptional regulation of the placenta, a major determinant of offspring growth and sex-specific developmental outcomes. We evaluated the lasting influence of maternal and paternal preconception stress (PCS) on the mid-gestation placenta and fetal brain, utilizing their transcriptomes as proximate readouts of intergenerational impact. METHODS: To assess the combined vs. dominant influence of maternal and paternal preconception environment on sex-specific fetal development, we compared transcriptional outcomes using a breeding scheme of one stressed parent, both stressed parents, or no stressed parents as controls. RESULTS: Interestingly, offspring sex affected the directionality of transcriptional changes in response to PCS, where male tissues showed a predominant downregulation, and female tissues showed an upregulation. There was also an intriguing effect of parental sex on placental programming where paternal PCS drove more effects in female placentas, while maternal PCS produced more transcriptional changes in male placentas. However, in the fetal brain, maternal PCS produced overall more changes in gene expression than paternal PCS, supporting the idea that the intrauterine environment may have a larger overall influence on the developing brain than it does on shaping the placenta. DISCUSSION: Preconception experiences drive changes in the placental and the fetal brain transcriptome at a critical developmental timepoint. While not determinant, these altered transcriptional states may underlie sex-biased risk or resilience to stressful experiences later in life.


Asunto(s)
Encéfalo/metabolismo , Feto/metabolismo , Placenta/metabolismo , Lesiones Preconceptivas , Estrés Psicológico , Animales , Femenino , Masculino , Ratones , Embarazo , Caracteres Sexuales , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA