Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 177: 38-49, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842733

RESUMEN

RATIONALE: Flask-shaped invaginations of the cardiomyocyte sarcolemma called caveolae require the structural protein caveolin-3 (Cav-3) and host a variety of ion channels, transporters, and signaling molecules. Reduced Cav-3 expression has been reported in models of heart failure, and variants in CAV3 have been associated with the inherited long-QT arrhythmia syndrome. Yet, it remains unclear whether alterations in Cav-3 levels alone are sufficient to drive aberrant repolarization and increased arrhythmia risk. OBJECTIVE: To determine the impact of cardiac-specific Cav-3 ablation on the electrophysiological properties of the adult mouse heart. METHODS AND RESULTS: Cardiac-specific, inducible Cav3 homozygous knockout (Cav-3KO) mice demonstrated a marked reduction in Cav-3 expression by Western blot and loss of caveolae by electron microscopy. However, there was no change in macroscopic cardiac structure or contractile function. The QTc interval was increased in Cav-3KO mice, and there was an increased propensity for ventricular arrhythmias. Ventricular myocytes isolated from Cav-3KO mice exhibited a prolonged action potential duration (APD) that was due to reductions in outward potassium currents (Ito, Iss) and changes in inward currents including slowed inactivation of ICa,L and increased INa,L. Mathematical modeling demonstrated that the changes in the studied ionic currents were adequate to explain the prolongation of the mouse ventricular action potential. Results from human iPSC-derived cardiomyocytes showed that shRNA knockdown of Cav-3 similarly prolonged APD. CONCLUSION: We demonstrate that Cav-3 and caveolae regulate cardiac repolarization and arrhythmia risk via the integrated modulation of multiple ionic currents.


Asunto(s)
Caveolas , Síndrome de QT Prolongado , Animales , Humanos , Ratones , Caveolas/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Arritmias Cardíacas/metabolismo , Potenciales de Acción , Canales Iónicos/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo
2.
Hypertension ; 80(3): 503-522, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36448463

RESUMEN

Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure. Sleep patterns, hormone release, eating habits, digestion, body temperature, renal and cardiovascular function, and other important host functions as well as gut microbiota exhibit circadian rhythms, and influence circadian rhythms of blood pressure. Potential benefits of nonpharmacologic interventions such as meal timing, and pharmacologic chronotherapeutic interventions, such as the bedtime administration of antihypertensive medications, have recently been suggested in some studies. However, the mechanisms underlying circadian rhythm-mediated blood pressure regulation and the efficacy of chronotherapy in hypertension remain unclear. This review summarizes the results of the National Heart, Lung, and Blood Institute workshop convened on October 27 to 29, 2021 to assess knowledge gaps and research opportunities in the study of circadian rhythm of blood pressure and chronotherapy for hypertension.


Asunto(s)
Hipertensión , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Humanos , Presión Sanguínea/fisiología , Medicina de Precisión , Hipertensión/tratamiento farmacológico , Cronoterapia , Ritmo Circadiano/fisiología , Antihipertensivos/farmacología
3.
Heart Rhythm ; 19(11): 1927-1945, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37850602

RESUMEN

There are many challenges in the current landscape of electrophysiology (EP) clinical and translational research, including increasing costs and complexity, competing demands, regulatory requirements, and challenges with study implementation. This review seeks to broadly discuss the state of EP research, including challenges and opportunities. Included here are results from a Heart Rhythm Society (HRS) Research Committee member survey detailing HRS members' perspectives regarding both barriers to clinical and translational research and opportunities to address these challenges. We also provide stakeholder perspectives on barriers and opportunities for future EP research, including input from representatives of the U.S. Food and Drug Administration, industry, and research funding institutions that participated in a Research Collaboratory Summit convened by HRS. This review further summarizes the experiences of the heart failure and heart valve communities and how they have approached similar challenges in their own fields. We then explore potential solutions, including various models of research ecosystems designed to identify research challenges and to coordinate ways to address them in a collaborative fashion in order to optimize innovation, increase efficiency of evidence generation, and advance the development of new therapeutic products. The objectives of the proposed collaborative cardiac EP research community are to encourage and support scientific discourse, research efficiency, and evidence generation by exploring collaborative and equitable solutions in which stakeholders within the EP community can interact to address knowledge gaps, innovate, and advance new therapies.


Asunto(s)
Electrofisiología Cardíaca , Ecosistema , Investigación Biomédica Traslacional
4.
Circ Arrhythm Electrophysiol ; 14(11): e010181, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34719240

RESUMEN

Sudden cardiac death (SCD), the unexpected death due to acquired or genetic cardiovascular disease, follows distinct 24-hour patterns in occurrence. These 24-hour patterns likely reflect daily changes in arrhythmogenic triggers and the myocardial substrate caused by day/night rhythms in behavior, the environment, and endogenous circadian mechanisms. To better address fundamental questions regarding the circadian mechanisms, the National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death. We present a 2-part report of findings from this workshop. Part 1 summarizes the workshop and serves to identify research gaps and opportunities in the areas of basic and translational research. Among the gaps was the lack of standardization in animal studies for reporting environmental conditions (eg, timing of experiments relative to the light dark cycle or animal housing temperatures) that can impair rigor and reproducibility. Workshop participants also pointed to uncertainty regarding the importance of maintaining normal circadian rhythmic synchrony and the potential pathological impact of desynchrony on SCD risk. One related question raised was whether circadian mechanisms can be targeted to reduce SCD risk. Finally, the experts underscored the need for studies aimed at determining the physiological importance of circadian clocks in the many different cell types important to normal heart function and SCD. Addressing these gaps could lead to new therapeutic approaches/molecular targets that can mitigate the risk of SCD not only at certain times but over the entire 24-hour period.


Asunto(s)
Ritmo Circadiano/fisiología , Muerte Súbita Cardíaca/etiología , National Heart, Lung, and Blood Institute (U.S.) , Animales , Humanos , Estados Unidos
5.
Circ Arrhythm Electrophysiol ; 14(11): e010190, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34719257

RESUMEN

Sudden cardiac death (SCD) is the sudden, unexpected death due to abrupt loss of heart function secondary to cardiovascular disease. In certain populations living with cardiovascular disease, SCD follows a distinct 24-hour pattern in occurrence, suggesting day/night rhythms in behavior, the environment, and endogenous circadian rhythms result in daily spans of increased vulnerability. The National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death to identify fundamental questions regarding the role of the circadian rhythms in SCD. Part 2 summarizes research gaps and opportunities in the areas of population and clinical research identified in the workshop. Established research supports a complex interaction between circadian rhythms and physiological responses that increase the risk for SCD. Moreover, these physiological responses themselves are influenced by several biological variables, including the type of cardiovascular disease, sex, age, and genetics, as well as environmental factors. The emergence of new noninvasive biotechnological tools that continuously measure key cardiovascular variables, as well as the identification of biomarkers to assess circadian rhythms, hold promise for generating large-scale human data sets that will delineate which subsets of individuals are most vulnerable to SCD. Additionally, these data will improve our understanding of how people who suffer from circadian disruptions develop cardiovascular diseases that increase the risk for SCD. Emerging strategies to identify new biomarkers that can quantify circadian health (eg, environmental, behavioral, and internal misalignment) may lead to new interventions and therapeutic targets to prevent the progression of cardiovascular diseases that cause SCD.


Asunto(s)
Ritmo Circadiano/fisiología , Muerte Súbita Cardíaca/prevención & control , Vigilancia de la Población , Muerte Súbita Cardíaca/epidemiología , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos/epidemiología
6.
J Physiol ; 597(6): 1531-1551, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30588629

RESUMEN

KEY POINTS: Mutations in the caveolae scaffolding protein, caveolin-3 (Cav3), have been linked to the long QT type 9 inherited arrhythmia syndrome (LQT9) and the cause of underlying action potential duration prolongation is incompletely understood. In the present study, we show that LQT9 Cav3 mutations, F97C and S141R, cause mutation-specific gain of function effects on Cav 1.2-encoded L-type Ca2+ channels responsible for ICa,L and also cause loss of function effects on heterologously expressed Kv 4.2 and Kv 4.3 channels responsible for Ito . A computational model of the human ventricular myocyte action potential suggests that the major ionic current change causing action potential duration prolongation in the presence of Cav3-F97C is the slowly inactivating ICa,L but, for Cav3-S141R, both increased ICa,L and increased late Na+ current contribute equally to action potential duration prolongation. Overall, the LQT9 Cav3-F97C and Cav3-S141R mutations differentially impact multiple ionic currents, highlighting the complexity of Cav3 regulation of cardiac excitability and suggesting mutation-specific therapeutic approaches. ABSTRACT: Mutations in the CAV3 gene encoding caveolin-3 (Cav3), a scaffolding protein integral to caveolae in cardiomyocytes, have been associated with the congenital long-QT syndrome (LQT9). Initial studies demonstrated that LQT9-associated Cav3 mutations, F97C and S141R, increase late sodium current as a potential mechanism to prolong action potential duration (APD) and cause LQT9. Whether these Cav3 LQT9 mutations impact other caveolae related ion channels remains unknown. We used the whole-cell, patch clamp technique to characterize the effect of Cav3-F97C and Cav3-S141R mutations on heterologously expressed Cav 1.2+Cav ß2cN4 channels, as well as Kv 4.2 and Kv 4.3 channels, in HEK 293 cells. Expression of Cav3-S141R increased ICa,L density without changes in gating properties, whereas expression of Cav3-F97C reduced Ca2+ -dependent inactivation of ICa,L without changing current density. The Cav3-F97C mutation reduced current density and altered the kinetics of IKv4.2 and IKv4.3 and also slowed recovery from inactivation. Cav3-S141R decreased current density and also slowed activation kinetics and recovery from inactivation of IKv4.2 but had no effect on IKv4.3 . Using the O'Hara-Rudy computational model of the human ventricular myocyte action potential, the Cav3 mutation-induced changes in Ito are predicted to have negligible effect on APD, whereas blunted Ca2+ -dependent inactivation of ICa,L by Cav3-F97C is predicted to be primarily responsible for APD prolongation, although increased ICa,L and late INa by Cav3-S141R contribute equally to APD prolongation. Thus, LQT9 Cav3-associated mutations, F97C and S141R, produce mutation-specific changes in multiple ionic currents leading to different primary causes of APD prolongation, which suggests the use of mutation-specific therapeutic approaches in the future.


Asunto(s)
Potenciales de Acción , Canales de Calcio Tipo L/metabolismo , Caveolina 3/genética , Síndrome de QT Prolongado/genética , Modelos Cardiovasculares , Mutación Missense , Canales de Potasio Shal/metabolismo , Células HEK293 , Humanos , Síndrome de QT Prolongado/fisiopatología
7.
Cell Rep ; 23(2): 459-469, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642004

RESUMEN

Cardiomyocytes from the apex but not the base of the heart increase their contractility in response to ß2-adrenoceptor (ß2AR) stimulation, which may underlie the development of Takotsubo cardiomyopathy. However, both cell types produce comparable cytosolic amounts of the second messenger cAMP. We investigated this discrepancy using nanoscale imaging techniques and found that, structurally, basal cardiomyocytes have more organized membranes (higher T-tubular and caveolar densities). Local membrane microdomain responses measured in isolated basal cardiomyocytes or in whole hearts revealed significantly smaller and more short-lived ß2AR/cAMP signals. Inhibition of PDE4, caveolar disruption by removing cholesterol or genetic deletion of Cav3 eliminated differences in local cAMP production and equilibrated the contractile response to ß2AR. We conclude that basal cells possess tighter control of cAMP because of a higher degree of signaling microdomain organization. This provides varying levels of nanostructural control for cAMP-mediated functional effects that orchestrate macroscopic, regional physiological differences within the heart.


Asunto(s)
Membrana Celular/química , AMP Cíclico/metabolismo , Corazón/anatomía & histología , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Caveolina 3/deficiencia , Caveolina 3/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Femenino , Corazón/fisiología , Isoproterenol/farmacología , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Transducción de Señal/efectos de los fármacos , beta-Ciclodextrinas/farmacología
8.
J Am Heart Assoc ; 7(3)2018 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431102

RESUMEN

BACKGROUND: Genetic causes of dilated cardiomyopathy (DCM) are incompletely understood. LRRC10 (leucine-rich repeat-containing 10) is a cardiac-specific protein of unknown function. Heterozygous mutations in LRRC10 have been suggested to cause DCM, and deletion of Lrrc10 in mice results in DCM. METHODS AND RESULTS: Whole-exome sequencing was carried out on a patient who presented at 6 weeks of age with DCM and her unaffected parents, filtering for rare, deleterious, recessive, and de novo variants. Whole-exome sequencing followed by trio-based filtering identified a homozygous recessive variant in LRRC10, I195T. Coexpression of I195T LRRC10 with the L-type Ca2+ channel (Cav1.2, ß2CN2, and α2δ subunits) in HEK293 cells resulted in a significant ≈0.5-fold decrease in ICa,L at 0 mV, in contrast to the ≈1.4-fold increase in ICa,L by coexpression of LRRC10 (n=9-12, P<0.05). Coexpression of LRRC10 or I195T LRRC10 did not alter the surface membrane expression of Cav1.2. LRRC10 coexpression with Cav1.2 in the absence of auxiliary ß2CN2 and α2δ subunits revealed coassociation of Cav1.2 and LRRC10 and a hyperpolarizing shift in the voltage dependence of activation (n=6-9, P<0.05). Ventricular myocytes from Lrrc10-/- mice had significantly smaller ICa,L, and coimmunoprecipitation experiments confirmed association between LRRC10 and the Cav1.2 subunit in mouse hearts. CONCLUSIONS: Examination of a patient with DCM revealed homozygosity for a previously unreported LRRC10 variant: I195T. Wild-type and I195T LRRC10 function as cardiac-specific subunits of L-type Ca2+ channels and exert dramatically different effects on channel gating, providing a potential link to DCM.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas de Microfilamentos/genética , Mutación , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio Tipo L/genética , Señalización del Calcio , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/metabolismo , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Homocigoto , Humanos , Lactante , Activación del Canal Iónico , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Miocitos Cardíacos/patología , Fenotipo , Secuenciación del Exoma
9.
Heart Rhythm ; 13(11): 2228-2236, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27498076

RESUMEN

BACKGROUND: Lamin A and C are nuclear filament proteins encoded by the LMNA gene. Mutations in the LMNA gene cause many congenital diseases known as laminopathies, including Emery-Dreifuss muscular dystrophy, Hutchinson-Gilford progeria syndrome, and familial dilated cardiomyopathy (DCM) with conduction disease. A missense mutation (N195K) in the A-type lamins results in familial DCM and sudden arrhythmic death. OBJECTIVE: The purpose of this study was to investigate the ion current mechanism of arrhythmia and DCM caused by the LaminA-N195K variant. METHODS: A homozygous mouse line expressing the Lmna-N195K mutation (LmnaN195K/N195K) that exhibited arrhythmia, DCM, and sudden death was used. Using whole cell patch-clamp technique, we measured action potential duration (APD), Na+ currents (INa) in ventricular myocytes isolated from LmnaN195K/N195K, and wild-type mice. RESULTS: Both peak and late INa were significantly (P <.05) increased in LmnaN195K/N195K ventricular myocytes. Similarly, LmnaN195K/N195K ventricular myocytes exhibited significant (P <.005) prolongation of APD (time to 50% [APD50] and 90% [APD90] repolarization) and triggered activity. Acute application of ranolazine inhibited late INa, shortened APD, and abolished triggered activity in LmnaN195K/N195K ventricular myocytes. CONCLUSION: Inhibition of late INa may be an effective therapy in preventing arrhythmia in patients with LmnaN195K mutation-related DCM.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Dilatada , Miocitos Cardíacos/metabolismo , Ranolazina/farmacología , Canales de Sodio , Potenciales de Acción , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevención & control , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Modelos Animales de Enfermedad , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Lamina Tipo A/genética , Ratones , Mutación Missense , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo
10.
Basic Res Cardiol ; 111(3): 28, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27023865

RESUMEN

Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac-specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury, suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: (1) ECG telemetry recordings at baseline and during pharmacological interventions, (2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and (3) baseline metabolism in Cav-3 OE and transgene-negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. The expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels, and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, heat generation, and feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection.


Asunto(s)
Caveolina 3/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Simulación por Computador , Electrocardiografía , Frecuencia Cardíaca/fisiología , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Am J Physiol Heart Circ Physiol ; 310(2): H269-78, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26608339

RESUMEN

We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to ß-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis.


Asunto(s)
Corazón/fisiopatología , Proteínas Musculares/metabolismo , Actinas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Fenómenos Biomecánicos , Cardiomegalia/fisiopatología , Fibrosis/patología , Cardiopatías/patología , Histidina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Contracción Miocárdica/genética , Miocitos Cardíacos/patología , Presión , Estrés Fisiológico , Función Ventricular/efectos de los fármacos
12.
Heart Rhythm ; 13(3): 743-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26538326

RESUMEN

BACKGROUND: In a canine model of premature ventricular contraction-induced cardiomyopathy (PVC-CM), Cav1.2 is downregulated and misplaced from transverse tubules (T tubules). Junctophilin-2 (JPH-2) is also downregulated. OBJECTIVES: The objectives of this study were to understand the role of JPH-2 in PVC-CM and to probe changes in other proteins involved in dyad structure and function. METHODS: We quantify T-tubule contents (di-8-ANEPPS fluorescence in live myocytes), examine myocyte ultrastructures (electron microscopy), probe JPH-2-interacting proteins (co-immunoprecipitation), quantify dyad and nondyad protein levels (immunoblotting), and examine subcellular distributions of dyad proteins (immunofluorescence/confocal microscopy). We also test direct JPH-2 modulation of channel function (vs indirect modulation through dyad formation) using heterologous expression. RESULTS: PVC myocytes have reduced T-tubule contents but otherwise normal ultrastructures. Among 19 proteins examined, only JPH-2, bridging integrator-1 (BIN-1), and Cav1.2 are highly downregulated in PVC hearts. However, statistical analysis indicates a general reduction in dyad protein levels when JPH-2 is downregulated. Furthermore, several dyad proteins, including Na/Ca exchanger, are missing or shifted from dyads to the peripheral surface in PVC myocytes. JPH-2 directly or indirectly interacts with Cai-handling proteins, Cav1.2 and KCNQ1, although not BIN-1 or other scaffolding proteins tested. Expression in mammalian cells that do not have dyads confirms direct JPH-2 modulation of the L-type Ca channel current (Cav1.2/voltage-gated Ca channel ß subunit 2) and slow delayed rectifier current (KCNQ1/KCNE1). CONCLUSION: JPH-2 is more than a "dyad glue": it can modulate Cai handling and ion channel function in the dyad region. Downregulation of JPH-2, BIN-1, and Cav1.2 plays a deterministic role in PVC-CM. Dissecting the hierarchical relationship among the three is necessary for the design of therapeutic interventions to prevent the progression of PVC-CM.


Asunto(s)
Cardiomiopatías/metabolismo , Proteínas de la Membrana/biosíntesis , Miocardio/metabolismo , Intercambiador de Sodio-Calcio/biosíntesis , Complejos Prematuros Ventriculares/metabolismo , Animales , Cardiomiopatías/etiología , Cardiomiopatías/patología , Células Cultivadas , Modelos Animales de Enfermedad , Perros , Immunoblotting , Microscopía Confocal , Microscopía Electrónica , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Complejos Prematuros Ventriculares/complicaciones , Complejos Prematuros Ventriculares/patología
13.
J Biol Chem ; 290(36): 22085-100, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26170457

RESUMEN

Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca(2+) cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca(2+) signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca(2+) current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Cardiomegalia/metabolismo , Caveolina 3/metabolismo , Miocitos Cardíacos/fisiología , Proteína Quinasa C-alfa/metabolismo , Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Western Blotting , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Caveolas/metabolismo , Caveolina 3/genética , Células Cultivadas , Expresión Génica , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Técnicas de Placa-Clamp , Proteína Quinasa C-alfa/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
PLoS One ; 10(6): e0131399, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114725

RESUMEN

The dihydropyridine receptor (DHPR) ß1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of ß1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1) complex is still debatable. We used fluorescence resonance energy transfer (FRET) to probe proximity relationships within the ß1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP) was used as the FRET donor. Ten ß1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of ß1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the ß1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1) myotubes revealed that in only one construct (H458 CCPGCC ß1a -CFP) FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the ß1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of ß1a and RyR1 in resting myotubes.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Secuencias de Aminoácidos , Animales , Canales de Calcio Tipo L/genética , Ratones , Ratones Mutantes , Fibras Musculares Esqueléticas , Canal Liberador de Calcio Receptor de Rianodina/genética
15.
J Mol Cell Cardiol ; 61: 102-10, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23541953

RESUMEN

AIMS: Mutations in CAV3-encoding caveolin-3 (Cav3) have been implicated in type 9 long QT syndrome (LQT9) and sudden infant death syndrome (SIDS). When co-expressed with SCN5A-encoded cardiac sodium channels these mutations increased late sodium current (INa) but the mechanism was unclear. The present study was designed to address the mechanism by which the LQT9-causing mutant Cav3-F97C affects the function of caveolar SCN5A. METHODS AND RESULTS: HEK-293 cells expressing SCN5A and LQT9 mutation Cav3-F97C resulted in a 2-fold increase in late INa compared to Cav3-WT. This increase was reversed by the neural nitric oxide synthase (nNOS) inhibitor L-NMMA. Based on these findings, we hypothesized that an nNOS complex mediated the effect of Cav3 on SCN5A. A SCN5A macromolecular complex was established in HEK-293 cells by transiently expressing SCN5A, α1-syntrophin (SNTA1), nNOS, and Cav3. Compared with Cav3-WT, Cav3-F97C produced significantly larger peak INa amplitudes, and showed 3.3-fold increase in the late INa associated with increased S-nitrosylation of SCN5A. L-NMMA reversed both the Cav3-F97C induced increase in late and peak INa and decreased S-nitrosylation of SCN5A. Overexpression of Cav3-F97C in adult rat cardiomyocytes caused a significant increase in late INa compared to Cav3-WT, and prolonged the action potential duration (APD90) in a nNOS-dependent manner. CONCLUSIONS: Cav3 is identified as an important negative regulator for cardiac late INa via nNOS dependent direct S-nitrosylation of SCN5A. This provides a molecular mechanism for how Cav3 mutations increase late INa to cause LQT9. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".


Asunto(s)
Caveolina 3/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , S-Nitrosotioles/metabolismo , Animales , Células HEK293 , Humanos , Síndrome de QT Prolongado/genética , Potenciales de la Membrana , Mutación Missense , Miocitos Cardíacos/fisiología , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Sodio/metabolismo
16.
Pigment Cell Melanoma Res ; 26(3): 348-56, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23452348

RESUMEN

Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L-AP4, a type III mGluR-selective agonist, enhances Ca(2+) uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L-AP4-induced Ca(2+) influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi /Go proteins, did not affect basal or mGluR6-induced Ca(2+) uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.


Asunto(s)
Melaninas/metabolismo , Melanocitos/metabolismo , Receptores de Glutamato/metabolismo , Canales Catiónicos TRPM/metabolismo , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Epidérmicas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/farmacología , Humanos , Recién Nacido , Masculino , Melanocitos/citología , Melanocitos/efectos de los fármacos , Técnicas de Placa-Clamp , Propionatos/farmacología , Receptores de Glutamato/genética , Transducción de Señal/efectos de los fármacos
17.
PLoS One ; 7(12): e51621, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23236519

RESUMEN

Leucine-rich repeat containing 10 (LRRC10) is a cardiac-specific protein exclusively expressed in embryonic and adult cardiomyocytes. However, the role of LRRC10 in mammalian cardiac physiology remains unknown. To determine if LRRC10 is critical for cardiac function, Lrrc10-null (Lrrc10(-/-)) mice were analyzed. Lrrc10(-) (/-) mice exhibit prenatal systolic dysfunction and dilated cardiomyopathy in postnatal life. Importantly, Lrrc10(-/-) mice have diminished cardiac performance in utero, prior to ventricular dilation observed in young adults. We demonstrate that LRRC10 endogenously interacts with α-actinin and α-actin in the heart and all actin isoforms in vitro. Gene expression profiling of embryonic Lrrc10(-/-) hearts identified pathways and transcripts involved in regulation of the actin cytoskeleton to be significantly upregulated, implicating dysregulation of the actin cytoskeleton as an early defective molecular signal in the absence of LRRC10. In contrast, microarray analyses of adult Lrrc10(-/-) hearts identified upregulation of oxidative phosphorylation and cardiac muscle contraction pathways during the progression of dilated cardiomyopathy. Analyses of hypertrophic signal transduction pathways indicate increased active forms of Akt and PKCε in adult Lrrc10(-/-) hearts. Taken together, our data demonstrate that LRRC10 is essential for proper mammalian cardiac function. We identify Lrrc10 as a novel dilated cardiomyopathy candidate gene and the Lrrc10(-/-) mouse model as a unique system to investigate pediatric cardiomyopathy.


Asunto(s)
Actinina/metabolismo , Actinas/metabolismo , Cardiomiopatía Dilatada/genética , Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Animales , Western Blotting , Ecocardiografía , Perfilación de la Expresión Génica , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Noqueados , Análisis por Micromatrices , Proteínas Musculares/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos
18.
Circulation ; 126(24): 2809-18, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23136156

RESUMEN

BACKGROUND: Type 2 long QT syndrome involves mutations in the human ether a-go-go-related gene (hERG or KCNH2). T421M, an S1 domain mutation in the Kv11.1 channel protein, was identified in a resuscitated patient. We assessed its biophysical, protein trafficking, and pharmacological mechanisms in adult rat ventricular myocytes. METHODS AND RESULTS: Isolated adult rat ventricular myocytes were infected with wild-type (WT)-Kv11.1- and T421M-Kv11.1-expressing adenovirus and analyzed with the use of patch clamp, Western blot, and confocal imaging techniques. Expression of WT-Kv11.1 or T421M-Kv11.1 produced peak tail current (I(Kv11.1)) of 8.78±1.18 and 1.91±0.22 pA/pF, respectively. Loss of mutant I(Kv11.1) resulted from (1) a partially trafficking-deficient channel protein with reduced cell surface expression and (2) altered channel gating with a positive shift in the voltage dependence of activation and altered kinetics of activation and deactivation. Coexpression of WT+T421M-Kv11.1 resulted in heterotetrameric channels that remained partially trafficking deficient with only a minimal increase in peak I(Kv11.1) density, whereas the voltage dependence of channel gating became WT-like. In the adult rat ventricular myocyte model, both WT-Kv11.1 and T421M-Kv11.1 channels responded to ß-adrenergic stimulation by increasing I(Kv11.1). CONCLUSIONS: The T421M-Kv11.1 mutation caused a loss of I(Kv11.1) through interactions of abnormal protein trafficking and channel gating. Furthermore, for coexpressed WT+T421M-Kv11.1 channels, different dominant-negative interactions govern protein trafficking and ion channel gating, and these are likely to be reflected in the clinical phenotype. Our results also show that WT and mutant Kv11.1 channels responded to ß-adrenergic stimulation.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/fisiología , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/fisiología , Adulto , Animales , Canal de Potasio ERG1 , Femenino , Células HEK293 , Humanos , Síndrome de QT Prolongado/fisiopatología , Potenciales de la Membrana/fisiología , Mutación Missense/genética , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Potasio/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/fisiología , Transfección/métodos
19.
FASEB J ; 26(11): 4637-49, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22859372

RESUMEN

We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae-mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav-3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress-induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav-3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin-knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav-2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria-caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.


Asunto(s)
Caveolinas/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Fisiológico/fisiología , Adaptación Fisiológica , Animales , Calcio/metabolismo , Calcio/toxicidad , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/efectos de los fármacos , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/análisis
20.
J Am Coll Cardiol ; 57(22): 2273-83, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21616289

RESUMEN

OBJECTIVES: We hypothesized that cardiac myocyte-specific overexpression of caveolin-3 (Cav-3), a muscle-specific caveolin, would alter natriuretic peptide signaling and attenuate cardiac hypertrophy. BACKGROUND: Natriuretic peptides modulate cardiac hypertrophy and are potential therapeutic options for patients with heart failure. Caveolae, microdomains in the plasma membrane that contain caveolin proteins and natriuretic peptide receptors, have been implicated in cardiac hypertrophy and natriuretic peptide localization. METHODS: We generated transgenic mice with cardiac myocyte-specific overexpression of caveolin-3 (Cav-3 OE) and also used an adenoviral construct to increase Cav-3 in cardiac myocytes. RESULTS: The Cav-3 OE mice subjected to transverse aortic constriction had increased survival, reduced cardiac hypertrophy, and maintenance of cardiac function compared with control mice. In left ventricle at baseline, messenger ribonucleic acid for atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were increased 7- and 3-fold, respectively, in Cav-3 OE mice compared with control subjects and were accompanied by increased protein expression for ANP and BNP. In addition, ventricles from Cav-3 OE mice had greater cyclic guanosine monophosphate levels, less nuclear factor of activated T-cell nuclear translocation, and more nuclear Akt phosphorylation than ventricles from control subjects. Cardiac myocytes incubated with Cav-3 adenovirus showed increased expression of Cav-3, ANP, and Akt phosphorylation. Incubation with methyl-ß-cyclodextrin, which disrupts caveolae, or with wortmannin, a PI3K inhibitor, blocked the increase in ANP expression. CONCLUSIONS: These results imply that cardiac myocyte-specific Cav-3 OE is a novel strategy to enhance natriuretic peptide expression, attenuate hypertrophy, and possibly exploit the therapeutic benefits of natriuretic peptides in cardiac hypertrophy and heart failure.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Caveolas/metabolismo , Caveolina 3/metabolismo , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/metabolismo , Animales , Factor Natriurético Atrial/sangre , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , GMP Cíclico/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Técnicas para Inmunoenzimas , Técnicas In Vitro , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Péptido Natriurético Encefálico/sangre , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA