Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 3(6): e001491, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25497881

RESUMEN

BACKGROUND: The mouse ether-a-go-go-related gene 1a (mERG1a, mKCNH2) encodes mERG K(+) channels in mouse cardiomyocytes. The mERG channels and their human analogue, hERG channels, conduct IKr. Mutations in hERG channels reduce IKr to cause congenital long-QT syndrome type 2, mostly by decreasing surface membrane expression of trafficking-deficient channels. Three cDNA sequences were originally reported for mERG channels that differ by 1 to 4 amino acid residues (mERG-London, mERG-Waterston, and mERG-Nie). We characterized these mERG channels to test the postulation that they would differ in their protein trafficking and biophysical function, based on previous findings in long-QT syndrome type 2. METHODS AND RESULTS: The 3 mERG and hERG channels were expressed in HEK293 cells and neonatal mouse cardiomyocytes and were studied using Western blot and whole-cell patch clamp. We then compared our findings with the recent sequencing results in the Welcome Trust Sanger Institute Mouse Genomes Project (WTSIMGP). CONCLUSIONS: First, the mERG-London channel with amino acid substitutions in regions of highly ordered structure is trafficking deficient and undergoes temperature-dependent and pharmacological correction of its trafficking deficiency. Second, the voltage dependence of channel gating would be different for the 3 mERG channels. Third, compared with the WTSIMGP data set, the mERG-Nie clone is likely to represent the wild-type mouse sequence and physiology. Fourth, the WTSIMGP analysis suggests that substrain-specific sequence differences in mERG are a common finding in mice. These findings with mERG channels support previous findings with hERG channel structure-function analyses in long-QT syndrome type 2, in which sequence changes in regions of highly ordered structure are likely to result in abnormal protein trafficking.


Asunto(s)
Clonación Molecular , Canales de Potasio Éter-A-Go-Go/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Activación del Canal Iónico , Síndrome de QT Prolongado/genética , Potenciales de la Membrana , Ratones de la Cepa 129 , Mutación , Fenotipo , Transporte de Proteínas , Análisis de Secuencia de ADN , Factores de Tiempo , Transfección
2.
Circulation ; 126(24): 2809-18, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23136156

RESUMEN

BACKGROUND: Type 2 long QT syndrome involves mutations in the human ether a-go-go-related gene (hERG or KCNH2). T421M, an S1 domain mutation in the Kv11.1 channel protein, was identified in a resuscitated patient. We assessed its biophysical, protein trafficking, and pharmacological mechanisms in adult rat ventricular myocytes. METHODS AND RESULTS: Isolated adult rat ventricular myocytes were infected with wild-type (WT)-Kv11.1- and T421M-Kv11.1-expressing adenovirus and analyzed with the use of patch clamp, Western blot, and confocal imaging techniques. Expression of WT-Kv11.1 or T421M-Kv11.1 produced peak tail current (I(Kv11.1)) of 8.78±1.18 and 1.91±0.22 pA/pF, respectively. Loss of mutant I(Kv11.1) resulted from (1) a partially trafficking-deficient channel protein with reduced cell surface expression and (2) altered channel gating with a positive shift in the voltage dependence of activation and altered kinetics of activation and deactivation. Coexpression of WT+T421M-Kv11.1 resulted in heterotetrameric channels that remained partially trafficking deficient with only a minimal increase in peak I(Kv11.1) density, whereas the voltage dependence of channel gating became WT-like. In the adult rat ventricular myocyte model, both WT-Kv11.1 and T421M-Kv11.1 channels responded to ß-adrenergic stimulation by increasing I(Kv11.1). CONCLUSIONS: The T421M-Kv11.1 mutation caused a loss of I(Kv11.1) through interactions of abnormal protein trafficking and channel gating. Furthermore, for coexpressed WT+T421M-Kv11.1 channels, different dominant-negative interactions govern protein trafficking and ion channel gating, and these are likely to be reflected in the clinical phenotype. Our results also show that WT and mutant Kv11.1 channels responded to ß-adrenergic stimulation.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/fisiología , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/fisiología , Adulto , Animales , Canal de Potasio ERG1 , Femenino , Células HEK293 , Humanos , Síndrome de QT Prolongado/fisiopatología , Potenciales de la Membrana/fisiología , Mutación Missense/genética , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Potasio/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/fisiología , Transfección/métodos
3.
Am J Physiol Heart Circ Physiol ; 298(6): H1842-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363883

RESUMEN

Mutations in human ether-a-go-go-related gene 1 (hERG) are linked to long QT syndrome type 2 (LQT2). hERG encodes the pore-forming alpha-subunits that coassemble to form rapidly activating delayed rectifier K(+) current in the heart. LQT2-linked missense mutations have been extensively studied in noncardiac heterologous expression systems, where biogenic (protein trafficking) and biophysical (gating and permeation) abnormalities have been postulated to underlie the loss-of-function phenotype associated with LQT2 channels. Little is known about the properties of LQT2-linked hERG channel proteins in native cardiomyocyte systems. In this study, we expressed wild-type (WT) hERG and three LQT2-linked mutations in neonatal mouse cardiomyocytes and studied their electrophysiological and biochemical properties. Compared with WT hERG channels, the LQT2 missense mutations G601S and N470D hERG exhibited altered protein trafficking and underwent pharmacological correction, and N470D hERG channels gated at more negative voltages. The DeltaY475 hERG deletion mutation trafficked similar to WT hERG channels, gated at more negative voltages, and had rapid deactivation kinetics, and these properties were confirmed in both neonatal mouse cardiomyocyte and human embryonic kidney (HEK)-293 cell expression systems. Differences between the cardiomyocytes and HEK-293 cell expression systems were that hERG current densities were reduced 10-fold and deactivation kinetics were accelerated 1.5- to 2-fold in neonatal mouse cardiomyocytes. An important finding of this work is that pharmacological correction of trafficking-deficient LQT2 mutations, as a potential innovative approach to therapy, is possible in native cardiac tissue.


Asunto(s)
Animales Recién Nacidos/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Línea Celular , Canal de Potasio ERG1 , Fenómenos Electrofisiológicos , Riñón/citología , Riñón/embriología , Riñón/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Ratones , Modelos Animales , Mutación Missense/genética , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp
4.
J Cardiovasc Pharmacol ; 56(2): 113-22, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20224422

RESUMEN

Inherited arrhythmia syndromes comprise an increasingly complex group of diseases involving mutations in multiple genes encoding ion channels, ion channel accessory subunits and channel interacting proteins, and various regulatory elements. These mutations serve to disrupt normal electrophysiology in the heart, leading to increased arrhythmogenic risk and death. These diseases have added impact as they often affect young people, sometimes without warning. Although originally thought to alter ion channel function, it is now increasingly recognized that mutations may alter ion channel protein and messenger RNA processing, to reduce the number of channels reaching the surface membrane. For many of these mutations, it is also known that several interventions may restore protein processing of mutant channels to increase their surface membrane expression toward normal. In this article, we reviewed inherited arrhythmia syndromes, focusing on long QT syndrome type 2, and discuss the complex biology of ion channel trafficking and pharmacological rescue of disease-causing mutant channels. Pharmacological rescue of misprocessed mutant channel proteins, or their transcripts providing appropriate small molecule drugs can be developed, has the potential for novel clinical therapies in some patients with inherited arrhythmia syndromes.


Asunto(s)
Arritmias Cardíacas/metabolismo , Canales Iónicos/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Canales Iónicos/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/terapia , Mutación , Transporte de Proteínas
5.
Channels (Austin) ; 1(4): 263-72, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18708743

RESUMEN

The localization of ion channels to specific membrane microdomains can impact the functional properties of channels and their role in cellular physiology. We determined the membrane localization of human Kv11.1 (hERG1) alpha-subunit protein, which underlies the rapidly activating, delayed rectifier K(+) current (I(Kr)) in the heart. Immunocytochemistry and membrane fractionation using discontinuous sucrose density gradients of adult canine ventricular tissue showed that Kv11.1 channel protein localized to both the cell surface and T-tubular sarcolemma. Furthermore, density gradient membrane fractionation using detergent (Triton X-100) and non-detergent (OptiPrep) methods from canine ventricular myocytes or HEK293 cells demonstrated that Kv11.1 protein, along with MiRP1 and Kv7.1 (KCNQ1) proteins, localize in cholesterol and sphingolipid enriched membrane fractions. In HEK293 cells, Kv11.1 channels, but not long QT-associated mutant G601S-Kv11.1 channels, also localized to cholesterol and sphingolipid enriched membrane fractions. Depletion of membrane cholesterol from HEK293 cells expressing Kv11.1 channels using methyl-beta-cyclodextrin (MbetaCD) caused a positive shift of the voltage dependence of activation and an acceleration of deactivation kinetics of Kv11.1 current (I(Kv11.1)). Cholesterol loading of HEK293 cells reduced the steep voltage dependence of I(Kv11.1) activation and accelerated the inactivation kinetics of I(Kv11.1). Incubation of neonatal mouse myocytes in MbetaCD also accelerated the deactivation kinetics of I(Kr). We conclude that Kv11.1 protein localizes in cholesterol and sphingolipid enriched membranes and that membrane cholesterol can modulate I(Kv11.1) and I(Kr).


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Esfingolípidos/metabolismo , Animales , Caveolina 3/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Colesterol/deficiencia , Perros , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/genética , Ventrículos Cardíacos/metabolismo , Humanos , Cinética , Potenciales de la Membrana , Ratones , Mutación , Miocitos Cardíacos/efectos de los fármacos , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/genética , Sarcolema/metabolismo , Transfección , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...