Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(7): 1971-1982, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022362

RESUMEN

Thrombosis, a key factor in most cardiovascular diseases, is a major contributor to human mortality. Existing antithrombotic agents carry a risk of bleeding. Consequently, there is a keen interest in discovering innovative antithrombotic agents that can prevent thrombosis without negatively impacting hemostasis. Platelets play crucial roles in both hemostasis and thrombosis. We have previously characterized calcium- and integrin-binding protein 1 (CIB1) as a key regulatory molecule that regulates platelet function. CIB1 interacts with several platelet proteins including integrin αIIbß3, the major glycoprotein receptor for fibrinogen on platelets. Given that CIB1 regulates platelet function through its interaction with αIIbß3, we developed a fluorescence polarization (FP) assay to screen for potential inhibitors. The assay was miniaturized to 1536-well and screened in quantitative high-throughput screening (qHTS) format against a diverse compound library of 14,782 compounds. After validation and selectivity testing using the FP assay, we identified 19 candidate inhibitors and validated them using an in-gel binding assay that monitors the interaction of CIB1 with αIIb cytoplasmic tail peptide, followed by testing of top hits by intrinsic tryptophan fluorescence (ITF) and microscale thermophoresis (MST) to ascertain their interaction with CIB1. Two of the validated hits shared similar chemical structures, suggesting a common mechanism of action. Docking studies further revealed promising interactions within the hydrophobic binding pocket of the target protein, particularly forming key hydrogen bonds with Ser180. The compounds exhibited a potent antiplatelet activity based on their inhibition of thrombin-induced human platelet aggregation, thus indicating that disruptors of the CIB1- αIIbß3 interaction could carry a translational potential as antithrombotic agents.

2.
mBio ; 14(5): e0213523, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37830812

RESUMEN

IMPORTANCE: Lyme disease is a major tick-borne infection caused by a bacterial pathogen called Borrelia burgdorferi, which is transmitted by ticks and affects hundreds of thousands of people every year. These bacterial pathogens are distinct from other genera of microbes because of their distinct features and ability to transmit a multi-system infection to a range of vertebrates, including humans. Progress in understanding the infection biology of Lyme disease, and thus advancements towards its prevention, are hindered by an incomplete understanding of the microbiology of B. burgdorferi, partly due to the occurrence of many unique borrelial proteins that are structurally unrelated to proteins of known functions yet are indispensable for pathogen survival. We herein report the use of diverse technologies to examine the structure and function of a unique B. burgdorferi protein, annotated as BB0238-an essential virulence determinant. We show that the protein is structurally organized into two distinct domains, is involved in multiplex protein-protein interactions, and facilitates tick-to-mouse pathogen transmission by aiding microbial evasion of early host cellular immunity. We believe that our findings will further enrich our understanding of the microbiology of B. burgdorferi, potentially impacting the future development of novel prevention strategies against a widespread tick-transmitted infection.


Asunto(s)
Borrelia burgdorferi , Borrelia , Ixodes , Enfermedad de Lyme , Garrapatas , Animales , Humanos , Ratones , Evasión Inmune , Enfermedad de Lyme/microbiología , Borrelia burgdorferi/metabolismo , Garrapatas/microbiología , Ixodes/microbiología
3.
Nat Commun ; 14(1): 4798, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558718

RESUMEN

UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Auranofina/farmacología , Ubiquitinación , Enzimas Activadoras de Ubiquitina/metabolismo
5.
Science ; 379(6628): eabl3837, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36634189

RESUMEN

Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immunity. We report an evolutionary interspecies communication pathway involving a central Ixodes scapularis tick receptor termed Dome1, which acquired a mammalian cytokine receptor motif exhibiting high affinity for interferon-gamma (IFN-γ). Host-derived IFN-γ facilitates Dome1-mediated activation of the Ixodes JAK-STAT pathway. This accelerates tick blood meal acquisition and development while upregulating antimicrobial components. The Dome1-JAK-STAT pathway, which exists in most Ixodid tick genomes, regulates the regeneration and proliferation of gut cells-including stem cells-and dictates metamorphosis through the Hedgehog and Notch-Delta networks, ultimately affecting Ixodes vectorial competence. We highlight the evolutionary dependence of I. scapularis on mammalian hosts through cross-species signaling mechanisms that dually influence arthropod immunity and development.


Asunto(s)
Vectores Arácnidos , Interacciones Huésped-Parásitos , Ixodes , Quinasas Janus , Receptores de Citocinas , Factores de Transcripción STAT , Animales , Interferón gamma/metabolismo , Ixodes/genética , Ixodes/inmunología , Quinasas Janus/genética , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Interacciones Huésped-Parásitos/inmunología , Receptores de Citocinas/metabolismo , Vectores Arácnidos/inmunología
6.
Expert Opin Drug Discov ; 18(1): 25-35, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562206

RESUMEN

INTRODUCTION: Luminescence-based technologies, specifically bioluminescence and chemiluminescence, are powerful tools with extensive use in drug discovery. Production of light during chemiluminescence and bioluminescence, unlike fluorescence, doesn't require an excitation light source, resulting in high signal-to-noise ratio, less background interference, and no issues from phototoxicity and photobleaching. These characteristics of luminescence technologies offer unique advantages for experimental designs, allowing for greater flexibility to target a wide range of proteins and biological processes for drug discovery at different stages. AREAS COVERED: This review provides a basic overview of luciferase-based technologies and details recent advances and use cases of luciferase and luciferin variations and their applicability in the drug discovery toolset. The authors expand upon specific applications of luciferase technologies, including chemiluminescent and bioluminescent-based microscopy. Finally, the authors lay out forward-looking statements on the field of luminescence and how it may shape the translational scientists' work moving forward. EXPERT OPINION: The demand for improved luciferase and luciferin pairs correlates strongly with efforts to improve the sensitivity and robustness of high-throughput assays. As luminescent reporter systems improve, so will the expansion of use cases for luminescence-based technologies in early-stage drug discovery. With the synthesis of novel, non-enzymatic chemiluminescence-based probes, which previously were restrained to only basic research applications, they may now be readily implemented in drug discovery campaigns.


Asunto(s)
Luminiscencia , Tecnología , Humanos , Luciferasas/metabolismo , Descubrimiento de Drogas
7.
Front Pharmacol ; 13: 1040039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506591

RESUMEN

Differential scanning fluorimetry is a rapid and economical biophysical technique used to monitor perturbations to protein structure during a thermal gradient, most often by detecting protein unfolding events through an environment-sensitive fluorophore. By employing an NTA-complexed fluorophore that is sensitive to nearby structural changes in histidine-tagged protein, a robust and sensitive differential scanning fluorimetry (DSF) assay is established with the specificity of an affinity tag-based system. We developed, optimized, and miniaturized this HIS-tag DSF assay (HIS-DSF) into a 1536-well high-throughput biophysical platform using the Borrelial high temperature requirement A protease (BbHtrA) as a proof of concept for the workflow. A production run of the BbHtrA HIS-DSF assay showed a tight negative control group distribution of Tm values with an average coefficient of variation of 0.51% and median coefficient of variation of compound Tm of 0.26%. The HIS-DSF platform will provide an additional assay platform for future drug discovery campaigns with applications in buffer screening and optimization, target engagement screening, and other biophysical assay efforts.

8.
Protein Sci ; 31(12): e4498, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334045

RESUMEN

The high-temperature requirement A (HtrA) serine protease family presents an attractive target class for antibacterial therapeutics development. These proteins possess dual protease and chaperone functions and contain numerous binding sites and regulatory loops, displaying diverse oligomerization patterns dependent on substrate type and occupancy. HtrA proteins that are natively purified coelute with contaminating peptides and activating species, shifting oligomerization and protein structure to differently activated populations. Here, a redesigned HtrA production results in cleaner preparations with high yields by overexpressing and purifying target protein from inclusion bodies under denaturing conditions, followed by a high-throughput screen for optimal refolding buffer composition using function-agnostic biophysical techniques that do not rely on target-specific measurements. We use Borrelia burgdorferi HtrA to demonstrate the effectiveness of our function-agnostic approach, while characterization with both new and established biophysical methods shows the retention of proteolytic and chaperone activity of the refolded protein. This systematic workflow and toolset will translate to the production of HtrA-family proteins in higher quantities of pure and monodisperse composition than the current literature standard, with applicability to a broad array of protein purification strategies.


Asunto(s)
Borrelia burgdorferi , Serina Endopeptidasas , Temperatura , Serina Endopeptidasas/química , Chaperonas Moleculares/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Bacterias/metabolismo , Serina Proteasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
9.
Sci Rep ; 12(1): 17372, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253497

RESUMEN

The small GTPase Cdc42 is an integral component of the cytoskeleton, and its dysregulation leads to pathophysiological conditions, such as cancer. Binding of Cdc42 to the scaffold protein IQGAP1 stabilizes Cdc42 in its active form. The interaction between Cdc42 and IQGAP1 enhances migration and invasion of cancer cells. Disrupting this association could impair neoplastic progression and metastasis; however, no effective means to achieve this has been described. Here, we screened 78,500 compounds using a homogeneous time resolved fluorescence-based assay to identify small molecules that disrupt the binding of Cdc42 to IQGAP1. From the combined results of the validation assay and counter-screens, we selected 44 potent compounds for cell-based experiments. Immunoprecipitation and cell viability analysis rendered four lead compounds, namely NCGC00131308, NCGC00098561, MLS000332963 and NCGC00138812, three of which inhibited proliferation and migration of breast carcinoma cells. Microscale thermophoresis revealed that two compounds bind directly to Cdc42. One compound reduced the amount of active Cdc42 in cells and effectively impaired filopodia formation. Docking analysis provided plausible models of the compounds binding to the hydrophobic pocket adjacent to the GTP binding site of Cdc42. In conclusion, we identified small molecules that inhibit binding between Cdc42 and IQGAP1, which could potentially yield chemotherapeutic agents.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Guanosina Trifosfato , Humanos , Transducción de Señal/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
10.
ACS Chem Biol ; 17(9): 2471-2482, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36049119

RESUMEN

Determining a molecule's mechanism of action is paramount during chemical probe development and drug discovery. The cellular thermal shift assay (CETSA) is a valuable tool to confirm target engagement in cells for a small molecule that demonstrates a pharmacological effect. CETSA directly detects biophysical interactions between ligands and protein targets, which can alter a protein's unfolding and aggregation properties in response to thermal challenge. In traditional CETSA experiments, each temperature requires an individual sample, which restricts throughput and requires substantial optimization. To capture the full aggregation profile of a protein from a single sample, we developed a prototype real-time CETSA (RT-CETSA) platform by coupling a real-time PCR instrument with a CCD camera to detect luminescence. A thermally stable Nanoluciferase variant (ThermLuc) was bioengineered to withstand unfolding at temperatures greater than 90 °C and was compatible with monitoring target engagement events when fused to diverse targets. Utilizing well-characterized inhibitors of lactate dehydrogenase alpha, RT-CETSA showed significant correlation with enzymatic, biophysical, and other cell-based assays. A data analysis pipeline was developed to enhance the sensitivity of RT-CETSA to detect on-target binding. RT-CETSA technology advances capabilities of the CETSA method and facilitates the identification of ligand-target engagement in cells, a critical step in assessing the mechanism of action of a small molecule.


Asunto(s)
Bioensayo , Descubrimiento de Drogas , Bioensayo/métodos , Descubrimiento de Drogas/métodos , Lactato Deshidrogenasas , Ligandos
11.
ACS Pharmacol Transl Sci ; 5(7): 468-478, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35821746

RESUMEN

The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for acute treatment of the disease. We investigate whether compounds that bind the human angiotensin-converting enzyme 2 (ACE2) protein can decrease SARS-CoV-2 replication without impacting ACE2's natural enzymatic function. Initial screening of a diversity library resulted in hit compounds active in an ACE2-binding assay, which showed little inhibition of ACE2 enzymatic activity (116 actives, success rate ∼4%), suggesting they were allosteric binders. Subsequent application of in silico techniques boosted success rates to ∼14% and resulted in 73 novel confirmed ACE2 binders with K d values as low as 6 nM. A subsequent SARS-CoV-2 assay revealed that five of these compounds inhibit the viral life cycle in human cells. Further effort is required to completely elucidate the antiviral mechanism of these ACE2-binders, but they present a valuable starting point for both the development of acute treatments for COVID-19 and research into the host-directed therapy.

12.
J Med Chem ; 65(12): 8303-8331, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35696646

RESUMEN

The perinucleolar compartment (PNC) is a dynamic subnuclear body found at the periphery of the nucleolus. The PNC is enriched with RNA transcripts and RNA-binding proteins, reflecting different states of genome organization. PNC prevalence positively correlates with cancer progression and metastatic capacity, making it a useful marker for metastatic cancer progression. A high-throughput, high-content assay was developed to identify novel small molecules that selectively reduce PNC prevalence in cancer cells. We identified and further optimized a pyrrolopyrimidine series able to reduce PNC prevalence in PC3M cancer cells at submicromolar concentrations without affecting cell viability. Structure-activity relationship exploration of the structural elements necessary for activity resulted in the discovery of several potent compounds. Analysis of in vitro drug-like properties led to the discovery of the bioavailable analogue, metarrestin, which has shown potent antimetastatic activity with improved survival in rodent models and is currently being evaluated in a first-in-human phase 1 clinical trial.


Asunto(s)
Núcleo Celular , Neoplasias , Biomarcadores/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Núcleo Celular/metabolismo , Humanos , Neoplasias/metabolismo , Pirimidinas , Pirroles
13.
Infect Immun ; 90(5): e0005922, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35416705

RESUMEN

The Borrelia burgdorferi BB0323 protein undergoes a complex yet poorly defined proteolytic maturation event that generates N-terminal and C-terminal proteins with essential functions in cell growth and infection. Here, we report that a borrelial protease, B. burgdorferi high temperature requirement A protease (BbHtrA), cleaves BB0323 between asparagine (N) and leucine (L) at positions 236 and 237, while the replacement of these residues with alanine in the mutant protein prevents its cleavage, despite preserving its normal secondary structure. The N-terminal BB0323 protein binds BbHtrA, but its cleavage site mutant displays deficiency in such interaction. An isogenic borrelial mutant with NL-to-AA substitution in BB0323 (referred to as Bbbb0323NL) maintains normal growth yet is impaired for infection of mice or transmission from infected ticks. Notably, the BB0323 protein is still processed in Bbbb0323NL, albeit with lower levels of mature N-terminal BB0323 protein and multiple aberrantly processed polypeptides, which could result from nonspecific cleavages at other asparagine and leucine residues in the protein. The lack of infectivity of Bbbb0323NL is likely due to the impaired abundance or stoichiometry of a protein complex involving BB0238, another spirochete protein. Together, these studies highlight that a precise proteolytic event and a particular protein-protein interaction, involving multiple borrelial virulence determinants, are mutually inclusive and interconnected, playing essential roles in the infectivity of Lyme disease pathogens.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Animales , Asparagina/metabolismo , Proteínas Bacterianas/metabolismo , Leucina/metabolismo , Enfermedad de Lyme/metabolismo , Ratones , Péptido Hidrolasas/metabolismo , Proteolisis , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
14.
bioRxiv ; 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35313579

RESUMEN

The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for an acute treatment for the disease. We investigate whether compounds that bind the human ACE2 protein can interrupt SARS-CoV-2 replication without damaging ACE2’s natural enzymatic function. Initial compounds were screened for binding to ACE2 but little interruption of ACE2 enzymatic activity. This set of compounds was extended by application of quantitative structure-activity analysis, which resulted in 512 virtual hits for further confirmatory screening. A subsequent SARS-CoV-2 replication assay revealed that five of these compounds inhibit SARS-CoV-2 replication in human cells. Further effort is required to completely determine the antiviral mechanism of these compounds, but they serve as a strong starting point for both development of acute treatments for COVID-19 and research into the mechanism of infection.

15.
ACS Pharmacol Transl Sci ; 4(5): 1675-1688, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34608449

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) has been actively generating SARS-CoV-2 high-throughput screening data and disseminates it through the OpenData Portal (https://opendata.ncats.nih.gov/covid19/). Here, we provide a hybrid approach that utilizes NCATS screening data from the SARS-CoV-2 cytopathic effect reduction assay to build predictive models, using both machine learning and pharmacophore-based modeling. Optimized models were used to perform two iterative rounds of virtual screening to predict small molecules active against SARS-CoV-2. Experimental testing with live virus provided 100 (∼16% of predicted hits) active compounds (efficacy > 30%, IC50 ≤ 15 µM). Systematic clustering analysis of active compounds revealed three promising chemotypes which have not been previously identified as inhibitors of SARS-CoV-2 infection. Further investigation resulted in the identification of allosteric binders to host receptor angiotensin-converting enzyme 2; these compounds were then shown to inhibit the entry of pseudoparticles bearing spike protein of wild-type SARS-CoV-2, as well as South African B.1.351 and UK B.1.1.7 variants.

16.
bioRxiv ; 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511420

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

17.
Sci Transl Med ; 12(530)2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051227

RESUMEN

Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.


Asunto(s)
Lectinas de Unión a Manosa , Macrófagos Asociados a Tumores , Animales , Línea Celular Tumoral , Humanos , Inmunidad Innata , Lectinas Tipo C , Receptor de Manosa , Ratones , Receptores de Superficie Celular
18.
Methods Mol Biol ; 2089: 47-68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31773647

RESUMEN

Differential scanning fluorometry (DSF) is an efficient and high-throughput method to analyze protein stability, as well as detect ligand interactions through perturbations of the protein's melting temperature. The method monitors protein unfolding by observing the fluorescence changes of a sample, whether through an environmentally sensitive fluorophore or by intrinsic protein fluorescence, while a temperature gradient is applied. Here, we describe in detail how to develop and optimize DSF assays to identify protein-ligand interactions while exploring different buffer and additive conditions. Analysis of the data and further applications of the method are also discussed.


Asunto(s)
Rastreo Diferencial de Calorimetría/métodos , Fluorometría/métodos , Proteínas/química , Proteínas/metabolismo , Fluorescencia , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento/métodos , Ligandos , Estabilidad Proteica , Desplegamiento Proteico , Temperatura
19.
Elife ; 72018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479275

RESUMEN

Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients.


Asunto(s)
HDL-Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Dominio Catalítico , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Células HEK293 , Humanos , Lípidos de la Membrana/metabolismo , Mutación/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Conformación Proteica , Electricidad Estática , Relación Estructura-Actividad
20.
Expert Opin Drug Discov ; 13(11): 1005-1014, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30320522

RESUMEN

INTRODUCTION: Drug plasma protein binding remains highly relevant to research and drug development, making the assessment and profiling of compound affinity to plasma proteins essential to drug discovery efforts. Although there are a number of fully-characterized methods, they lack the throughput to handle large numbers of compounds. As the evaluation of adsorption, distribution, metabolism, and excretion is addressed earlier in the drug development timeline, the need for higher-throughput methods has grown. Areas Covered: This review will highlight recent developments on methods for profiling drug plasma binding, with an emphasis on fluorescent probes and emerging high-throughput methodologies. Expert Opinion: There have been a number of high-throughput assays developed in recent years to meet the scaled up demands for compound profiling. Ultimately, the selection of assay technology relies on a number of factors, such as capabilities of the laboratory and the breadth and amount of data required. Fluorescent probe displacement assays are highly flexible and amenable to high-throughput screening, easily scaling up to handle large compound libraries. Recent developments in fluorescence technologies, such as homogenous time-resolved fluorescence and probes utilizing the aggregation-induced emission effect, have improved the sensitivity of these assays. Other technologies, such as microscale thermophoresis and quantitative structure-activity relationship modeling, are gaining popularity as alternative techniques for drug plasma protein binding characterization.


Asunto(s)
Desarrollo de Medicamentos/métodos , Colorantes Fluorescentes/metabolismo , Albúmina Sérica Humana/metabolismo , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Preparaciones Farmacéuticas/metabolismo , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...