Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Cytokine ; 183: 156731, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39168064

RESUMEN

Subunit vaccines drive immune cell-cell interactions in the lymph node (LN), yet it remains unclear how distinct adjuvants influence the chemokines responsible for this interaction in the tissue. Here, we tested the hypothesis that classic Th1-polarizing vaccines elicit a unique chemokine signature in the LN compared to other adjuvants. Polyinosinic:polycytidylic acid (Poly I:C) vaccination resulted in dynamic upregulation of CXCL9 that was localized in the interfollicular region, a response not observed after vaccination with alum or a combination of alum and poly I:C. Experiments using in vivo mouse models and live ex vivo LN slices revealed that poly I:C vaccination resulted in a type-I IFN response in the LN that led to the secretion of IFNγ, and type-I IFN and IFNγ were required for CXCL9 expression in this context. CXCL9 expression in the LN was correlated with an IgG2c antibody polarization after vaccination; however, genetic depletion of the receptor for CXCL9 did not prevent the development of this polarization. Additionally, we measured secretion of CXCL9 from ex vivo LN slices after stimulation with a variety of adjuvants and confirmed that adjuvants that induced IFNγ responses also promoted CXCL9 expression. Taken together, these results identify a CXCL9 signature in a suite of Th1-polarizing adjuvants and determined the pathway involved in driving CXCL9 in the LN, opening avenues to target this chemokine pathway in future vaccines.


Asunto(s)
Linfocitos B , Quimiocina CXCL9 , Interferón Tipo I , Interferón gamma , Ganglios Linfáticos , Ratones Endogámicos C57BL , Poli I-C , Transducción de Señal , Vacunación , Animales , Quimiocina CXCL9/metabolismo , Poli I-C/farmacología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Adyuvantes Inmunológicos/farmacología , Femenino
3.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091774

RESUMEN

Lymph nodes (LNs) are common sites of metastatic invasion in breast cancer, often preceding spread to distant organs and serving as key indicators of clinical disease progression. However, the mechanisms of cancer cell invasion into LNs are not well understood. Existing in vivo models struggle to isolate the specific impacts of the tumor-draining lymph node (TDLN) milieu on cancer cell invasion due to the co-evolving relationship between TDLNs and the upstream tumor. To address these limitations, we used live ex vivo LN tissue slices with intact chemotactic function to model cancer cell spread within a spatially organized microenvironment. After showing that BRPKp110 breast cancer cells were chemoattracted to factors secreted by naïve LN tissue in a 3D migration assay, we demonstrated that ex vivo LN slices could support cancer cell seeding, invasion, and spread. This novel approach revealed dynamic, preferential cancer cell invasion within specific anatomical regions of LNs, particularly the subcapsular sinus (SCS) and cortex, as well as chemokine-rich domains of immobilized CXCL13 and CCL1. While CXCR5 was necessary for a portion of BRPKp110 invasion into naïve LNs, disruption of CXCR5/CXCL13 signaling alone was insufficient to prevent invasion towards CXCL13-rich domains. Finally, we extended this system to pre-metastatic TDLNs, where the ex vivo model predicted a lower invasion of cancer cells. The reduced invasion was not due to diminished chemokine secretion, but it correlated with elevated intranodal IL-21. In summary, this innovative ex vivo model of cancer cell spread in live LN slices provides a platform to investigate cancer invasion within the intricate tissue microenvironment, supporting time-course analysis and parallel read-outs. We anticipate that this system will enable further research into cancer-immune interactions and allow isolation of specific factors that make TDLNs resistant to cancer cell invasion, which are challenging to dissect in vivo.

4.
bioRxiv ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-38826358

RESUMEN

Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement, due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to critical events such as vaccination. Here we developed a 3D-printed, user-friendly device and companion tubing-free impeller pump with the capacity to co-culture two or more tissue samples, including a LN, under a recirculating common media. Native tissue structure and immune function were incorporated by maintaining slices of murine LN tissue ex vivo in 3D-printed mesh supports for at least 24 hr. In a two-compartment model of a LN and an upstream injection site in mock tissue, vaccination of the multi-compartment chip was similar to in vivo vaccination in terms of locations of antigen accumulation and acute changes in activation markers and gene expression in the LN. We anticipate that in the future, this flexible platform will enable models of multi-organ immune responses throughout the body.

5.
Analyst ; 149(9): 2609-2620, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535830

RESUMEN

Cellular metabolism has been closely linked to activation state in cells of the immune system, and the oxygen consumption rate (OCR) in particular serves as a valuable metric for assessing metabolic activity. Several oxygen sensing assays have been reported for cells in standard culture conditions. However, none have provided a spatially resolved, optical measurement of local oxygen consumption in intact tissue samples, making it challenging to understand regional dynamics of consumption. Therefore, here we established a system to monitor the rates of oxygen consumption in ex vivo tissue slices, using murine lymphoid tissue as a case study. By integrating an optical oxygen sensor into a sealed perfusion chamber and incorporating appropriate correction for photobleaching of the sensor and of tissue autofluorescence, we were able to visualize and quantify rates of oxygen consumption in tissue. This method revealed for the first time that the rate of oxygen consumption in naïve lymphoid tissue was higher in the T cell region compared to the B cell and cortical regions. To validate the method, we measured OCR in the T cell regions of naïve lymph node slices using the optical assay and estimated the consumption rate per cell. The predictions from the optical assay were similar to reported values and were not significantly different from those of the Seahorse metabolic assay, a gold standard method for measuring OCR in cell suspensions. Finally, we used this method to quantify the rate of onset of tissue hypoxia for lymph node slices cultured in a sealed chamber and showed that continuous perfusion was sufficient to maintain oxygenation. In summary, this work establishes a method to monitor oxygen consumption with regional resolution in intact tissue explants, suitable for future use to compare tissue culture conditions and responses to stimulation.


Asunto(s)
Ganglios Linfáticos , Consumo de Oxígeno , Animales , Consumo de Oxígeno/fisiología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Oxígeno/análisis , Linfocitos T/metabolismo , Linfocitos T/citología
6.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260315

RESUMEN

Cellular metabolism has been closely linked to activation state in cells of the immune system, and the oxygen consumption rate (OCR) in particular serves as a valuable metric for assessing metabolic activity. Several oxygen sensing assays have been reported for cells in standard culture conditions. However, none have provided a spatially resolved, optical measurement of local oxygen consumption in intact tissue samples, making it challenging to understand regional dynamics of consumption. Therefore, here we established a system to monitor the rates of oxygen consumption in ex vivo tissue slices, using murine lymphoid tissue as a case study. By integrating an optical oxygen sensor into a sealed perfusion chamber and incorporating appropriate correction for photobleaching of the sensor and of tissue autofluorescence, we were able to visualize and quantify rates of oxygen consumption in tissue. This method revealed for the first time that the rate of oxygen consumption in naïve lymphoid tissue was higher in the T cell region compared to the B cell and cortical regions. To validate the method, we measured OCR in the T cell regions of naïve lymph node slices using the optical assay and estimated the consumption rate per cell. The predictions from the optical assay were similar to reported values and were not significantly different from those of the Seahorse metabolic assay, a gold standard method for measuring OCR in cell suspensions. Finally, we used this method to quantify the rate of onset of tissue hypoxia for lymph node slices cultured in a sealed chamber and showed that continuous perfusion was sufficient to maintain oxygenation. In summary, this work establishes a method to monitor oxygen consumption with regional resolution in intact tissue explants, suitable for future use to compare tissue culture conditions and responses to stimulation.

7.
Micromachines (Basel) ; 12(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34442615

RESUMEN

SlipChips are two-part microfluidic devices that can be reconfigured to change fluidic pathways for a wide range of functions, including tissue stimulation. Currently, fabrication of these devices at the prototype stage requires a skilled microfluidic technician, e.g., for wet etching or alignment steps. In most cases, SlipChip functionality requires an optically clear, smooth, and flat surface that is fluorophilic and hydrophobic. Here, we tested digital light processing (DLP) 3D printing, which is rapid, reproducible, and easily shared, as a solution for fabrication of SlipChips at the prototype stage. As a case study, we sought to fabricate a SlipChip intended for local delivery to live tissue slices through a movable microfluidic port. The device was comprised of two multi-layer components: an enclosed channel with a delivery port and a culture chamber for tissue slices with a permeable support. Once the design was optimized, we demonstrated its function by locally delivering a chemical probe to slices of hydrogel and to living tissue with up to 120 µm spatial resolution. By establishing the design principles for 3D printing of SlipChip devices, this work will enhance the ability to rapidly prototype such devices at mid-scale levels of production.

8.
ACS Pharmacol Transl Sci ; 4(1): 128-142, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33615167

RESUMEN

The lymph node is a highly organized and dynamic structure that is critical for facilitating the intercellular interactions that constitute adaptive immunity. Most ex vivo studies of the lymph node begin by reducing it to a cell suspension, thus losing the spatial organization, or fixing it, thus losing the ability to make repeated measurements. Live murine lymph node tissue slices offer the potential to retain spatial complexity and dynamic accessibility, but their viability, level of immune activation, and retention of antigen-specific functions have not been validated. Here we systematically characterized live murine lymph node slices as a platform to study immunity. Live lymph node slices maintained the expected spatial organization and cell populations while reflecting the 3D spatial complexity of the organ. Slices collected under optimized conditions were comparable to cell suspensions in terms of both 24-h viability and inflammation. Slices responded to T cell receptor cross-linking with increased surface marker expression and cytokine secretion, in some cases more strongly than matched lymphocyte cultures. Furthermore, slices processed protein antigens, and slices from vaccinated animals responded to ex vivo challenge with antigen-specific cytokine secretion. In summary, lymph node slices provide a versatile platform to investigate immune functions in spatially organized tissue, enabling well-defined stimulation, time-course analysis, and parallel read-outs.

9.
J Immunol Methods ; 489: 112943, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333059

RESUMEN

Lymph nodes (LNs) are essential secondary immune organs where the adaptive immune response is generated against most infections and vaccines. We recently described the use of live ex vivo LN slices to study the dynamics of adaptive immunity. However, when working with reactive lymph nodes from vaccinated animals, the tissues frequently became dislodged from the supportive agarose matrix during slicing, leading to damage that prevented downstream analysis. Because reactive lymph nodes expand into the surrounding adipose tissue, we hypothesized that dislodging was a result of excess lipids on the collagen capsule of the LN, and that a brief wash with a mild detergent would improve LN interaction with the agarose without damaging tissue viability or function. Therefore, we tested the use of digitonin on improving slicing of vaccinated LNs. Prior to embedding, LNs were quickly dipped into a digitonin solution and washed in saline. Lipid droplets were visibly removed by this procedure. A digitonin wash step prior to slicing significantly reduced the loss of LN during slicing from 13 to 75% to 0-25%, without substantial impact on viability. Capture of fluorescent microparticles, uptake and processing of protein antigen, and cytokine secretion in response to a vaccine adjuvant, R848, were all unaffected by the detergent wash. This novel approach will enable ex vivo analysis of the generation of adaptive immune response in LNs in response to vaccinations and other immunotherapies.


Asunto(s)
Detergentes/farmacología , Digitonina/farmacología , Ganglios Linfáticos/efectos de los fármacos , Animales , Antígenos/inmunología , Citocinas/inmunología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Vacunación
10.
Biomater Sci ; 8(7): 1897-1909, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32026891

RESUMEN

Tracking cell movements is an important aspect of many biological studies. Reagents for cell tracking must not alter the biological state of the cell and must be bright enough to be visualized above background autofluorescence, a particular concern when imaging in tissue. Currently there are few reagents compatible with standard UV excitation filter sets (e.g. DAPI) that fulfill those requirements, despite the development of many dyes optimized for violet excitation (405 nm). A family of boron-based fluorescent dyes, difluoroboron ß-diketonates, has previously served as bio-imaging reagents with UV excitation, offering high quantum yields and wide excitation peaks. In this study, we investigated the use of one such dye as a potential cell tracking reagent. A library of difluoroboron dibenzoylmethane (BF2dbm) conjugates were synthesized with biocompatible polymers including: poly(l-lactic acid) (PLLA), poly(ε-caprolactone) (PCL), and block copolymers with poly(ethylene glycol) (PEG). Dye-polymer conjugates were fabricated into nanoparticles, which were stable for a week at 37 °C in water and cell culture media, but quickly aggregated in saline. Nanoparticles were used to label primary splenocytes; phagocytic cell types were more effectively labelled. Labelling with nanoparticles did not affect cellular viability, nor basic immune responses. Labelled cells were more easily distinguished when imaged on a live tissue background than those labelled with a commercially available UV-excitable cytoplasmic labelling reagent. The high efficiency in terms of both fluorescence and cellular labelling may allow these nanoparticles to act as a short-term cell labelling strategy while wide excitation peaks offer utility across imaging and analysis platforms.


Asunto(s)
Linfocitos B/citología , Compuestos de Boro/química , Colorantes Fluorescentes/química , Poliésteres/química , Bazo/citología , Animales , Linfocitos B/química , Rastreo Celular , Células Cultivadas , Femenino , Masculino , Ratones , Nanopartículas , Espectrometría de Fluorescencia , Bazo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...