Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 10, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200602

RESUMEN

BACKGROUND AND AIMS: This study sought to determine the value of patient-derived organoids (PDOs) from esophago-gastric adenocarcinoma (EGC) for response prediction to neoadjuvant chemotherapy (neoCTx). METHODS: Endoscopic biopsies of patients with locally advanced EGC (n = 120) were taken into culture and PDOs expanded. PDOs' response towards the single substances of the FLOT regimen and the combination treatment were correlated to patients' pathological response using tumor regression grading. A classifier based on FLOT response of PDOs was established in an exploratory cohort (n = 13) and subsequently confirmed in an independent validation cohort (n = 13). RESULTS: EGC PDOs reflected patients' diverse responses to single chemotherapeutics and the combination regimen FLOT. In the exploratory cohort, PDOs response to single 5-FU and FLOT combination treatment correlated with the patients' pathological response (5-FU: Kendall's τ = 0.411, P = 0.001; FLOT: Kendall's τ = 0.694, P = 2.541e-08). For FLOT testing, a high diagnostic precision in receiver operating characteristic (ROC) analysis was reached with an AUCROC of 0.994 (CI 0.980 to 1.000). The discriminative ability of PDO-based FLOT testing allowed the definition of a threshold, which classified in an independent validation cohort FLOT responders from non-responders with high sensitivity (90%), specificity (100%) and accuracy (92%). CONCLUSION: In vitro drug testing of EGC PDOs has a high predictive accuracy in classifying patients' histological response to neoadjuvant FLOT treatment. Taking into account the high rate of successful PDO expansion from biopsies, the definition of a threshold that allows treatment stratification paves the way for an interventional trial exploring PDO-guided treatment of EGC patients.


Asunto(s)
Adenocarcinoma , Carbamatos , Pirazinas , Piridinas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Terapia Combinada , Terapia Neoadyuvante , Adenocarcinoma/tratamiento farmacológico , Organoides , Fluorouracilo/farmacología
2.
Nat Commun ; 15(1): 51, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168093

RESUMEN

Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Multiómica , Medicina de Precisión , Factores de Transcripción/genética , Sarcoma/genética , Sarcoma/terapia , Sarcoma/diagnóstico , Proteína EWS de Unión a ARN/genética , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/terapia , Proteínas Tirosina Quinasas Receptoras , Biomarcadores de Tumor/genética , Proteínas de Fusión Oncogénica/genética , Proteína-Arginina N-Metiltransferasas , Proteínas de Unión al ADN/genética
3.
Cell Rep Med ; 4(10): 101200, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37734378

RESUMEN

Targeted therapies are effective in treating cancer, but success depends on identifying cancer vulnerabilities. In our study, we utilize small RNA sequencing to examine the impact of pathway activation on microRNA (miRNA) expression patterns. Interestingly, we discover that miRNAs capable of inhibiting key members of activated pathways are frequently diminished. Building on this observation, we develop an approach that integrates a low-miRNA-expression signature to identify druggable target genes in cancer. We train and validate our approach in colorectal cancer cells and extend it to diverse cancer models using patient-derived in vitro and in vivo systems. Finally, we demonstrate its additional value to support genomic and transcriptomic-based drug prediction strategies in a pan-cancer patient cohort from the National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK) Molecularly Aided Stratification for Tumor Eradication (MASTER) precision oncology trial. In conclusion, our strategy can predict cancer vulnerabilities with high sensitivity and accuracy and might be suitable for future therapy recommendations in a variety of cancer subtypes.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , MicroARNs/genética , MicroARNs/metabolismo , Medicina de Precisión , Genómica , Transcriptoma
4.
Sci Adv ; 9(35): eade7486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656784

RESUMEN

In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔß3-αC oncoproteins usually lack five amino acids in the ß3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔß3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔß3-αC oncoproteins. We show that BRAFΔß3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔß3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔß3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Proteínas Proto-Oncogénicas B-raf , Humanos , Dimerización , Proteínas Proto-Oncogénicas B-raf/genética , Aminoácidos
5.
Cell Death Dis ; 14(2): 104, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765035

RESUMEN

Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen. MV-BiKE are only slightly attenuated compared to parental MV and mediate secretion of functional BiKE from infected tumor cells. We tested MV-BiKE activity in cocultures of colorectal or pancreatic cancer cells with primary human NK cells. MV-BiKE mediate expression of effector cytokines, degranulation and specific anti-tumor cytotoxicity by NK cells. Experiments with patient-derived pancreatic cancer cultures indicate that efficacy of MV-BiKE may vary between individual tumors with differential virus permissiveness. Remarkably, we confirmed MV-BiKE activity in primaryhuman colorectal carcinoma specimens with autochthonous tumor and NK cells.This study provides proof-of-concept for MV-BiKE as a novel immunovirotherapy to harness virus-activated NK cells as anti-tumor effectors.


Asunto(s)
Sarampión , Neoplasias Pancreáticas , Vacunas , Humanos , Células Asesinas Naturales , Antígenos de Neoplasias/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Vacunas/metabolismo , Sarampión/metabolismo , Línea Celular Tumoral
6.
Front Immunol ; 13: 1096162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726983

RESUMEN

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is largely refractory to cancer immunotherapy with PD-1 immune checkpoint blockade (ICB). Oncolytic virotherapy has been shown to synergize with ICB. In this work, we investigated the combination of anti-PD-1 and oncolytic measles vaccine in an immunocompetent transplantable PDAC mouse model. Methods: We characterized tumor-infiltrating T cells by immunohistochemistry, flow cytometry and T cell receptor sequencing. Further, we performed gene expression profiling of tumor samples at baseline, after treatment, and when tumors progressed. Moreover, we analyzed systemic anti-tumor and anti-viral immunity. Results: Combination treatment significantly prolonged survival compared to monotherapies. Tumor-infiltrating immune cells were increased after virotherapy. Gene expression profiling revealed a unique, but transient signature of immune activation after combination treatment. However, systemic anti-tumor immunity was induced by virotherapy and remained detectable even when tumors progressed. Anti-PD-1 treatment did not impact anti-viral immunity. Discussion: Our results indicate that combined virotherapy and ICB induces anti-tumor immunity and reshapes the tumor immune environment. However, further refinement of this approach may be required to develop its full potential and achieve durable efficacy.


Asunto(s)
Carcinoma Ductal Pancreático , Viroterapia Oncolítica , Neoplasias Pancreáticas , Ratones , Animales , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Inmunoterapia/métodos , Viroterapia Oncolítica/métodos , Neoplasias Pancreáticas
8.
Genome Med ; 13(1): 116, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34271981

RESUMEN

BACKGROUND: The development of secondary resistance (SR) in metastatic colorectal cancer (mCRC) treated with anti-epidermal growth factor receptor (anti-EGFR) antibodies is not fully understood at the molecular level. Here we tested in vivo selection of anti-EGFR SR tumors in CRC patient-derived xenograft (PDX) models as a strategy for a molecular dissection of SR mechanisms. METHODS: We analyzed 21 KRAS, NRAS, BRAF, and PI3K wildtype CRC patient-derived xenograft (PDX) models for their anti-EGFR sensitivity. Furthermore, 31 anti-EGFR SR tumors were generated via chronic in vivo treatment with cetuximab. A multi-omics approach was employed to address molecular primary and secondary resistance mechanisms. Gene set enrichment analyses were used to uncover SR pathways. Targeted therapy of SR PDX models was applied to validate selected SR pathways. RESULTS: In vivo anti-EGFR SR could be established with high efficiency. Chronic anti-EGFR treatment of CRC PDX tumors induced parallel evolution of multiple resistant lesions with independent molecular SR mechanisms. Mutations in driver genes explained SR development in a subgroup of CRC PDX models, only. Transcriptional reprogramming inducing anti-EGFR SR was discovered as a common mechanism in CRC PDX models frequently leading to RAS signaling pathway activation. We identified cAMP and STAT3 signaling activation, as well as paracrine and autocrine signaling via growth factors as novel anti-EGFR secondary resistance mechanisms. Secondary resistant xenograft tumors could successfully be treated by addressing identified transcriptional changes by tailored targeted therapies. CONCLUSIONS: Our study demonstrates that SR PDX tumors provide a unique platform to study molecular SR mechanisms and allow testing of multiple treatments for efficient targeting of SR mechanisms, not possible in the patient. Importantly, it suggests that the development of anti-EGFR tolerant cells via transcriptional reprogramming as a cause of anti-EGFR SR in CRC is likely more prevalent than previously anticipated. It emphasizes the need for analyses of SR tumor tissues at a multi-omics level for a comprehensive molecular understanding of anti-EGFR SR in CRC.


Asunto(s)
Biomarcadores de Tumor , Reprogramación Celular/genética , Neoplasias Colorrectales/etiología , Resistencia a Antineoplásicos/genética , Transcripción Genética , Alelos , Animales , Línea Celular , Evolución Clonal , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Biología Computacional , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Rep ; 36(3): 109394, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289372

RESUMEN

Novel treatment options for metastatic colorectal cancer (CRC) are urgently needed to improve patient outcome. Here, we screen a library of non-characterized small molecules against a heterogeneous collection of patient-derived CRC spheroids. By prioritizing compounds with inhibitory activity in a subset of-but not all-spheroid cultures, NCT02 is identified as a candidate with minimal risk of non-specific toxicity. Mechanistically, we show that NCT02 acts as molecular glue that induces ubiquitination of cyclin K (CCNK) and proteasomal degradation of CCNK and its complex partner CDK12. Knockout of CCNK or CDK12 decreases proliferation of CRC cells in vitro and tumor growth in vivo. Interestingly, sensitivity to pharmacological CCNK/CDK12 degradation is associated with TP53 deficiency and consensus molecular subtype 4 in vitro and in patient-derived xenografts. We thus demonstrate the efficacy of targeted CCNK/CDK12 degradation for a CRC subset, highlighting the potential of drug-induced proteolysis for difficult-to-treat types of cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteolisis , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Daño del ADN , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteómica , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
10.
Leukemia ; 35(10): 2948-2963, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34021250

RESUMEN

Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Lin- Sca1+ cKit+ cells drives lymphopoiesis whereas miR-342 OE increases myeloid colony formation in vitro and in vivo, going along with a profound upregulation of canonical pathways essential for B-cell development or myelopoietic functions upon Evl or miR-342 OE, respectively. Strikingly, miR-342 counteracts its host gene by targeting lymphoid signaling pathways, resulting in reduced pre-B-cell output. Moreover, EVL overexpression is associated with lymphoid leukemia in patients. In summary, our data show that one common gene locus regulates distinct hematopoietic differentiation programs depending on the gene product expressed, and that the balance between both may determine hematopoietic cell fate decision.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/citología , MicroARNs/genética , Animales , Moléculas de Adhesión Celular/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Intrones , Ratones
11.
Cancers (Basel) ; 13(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806447

RESUMEN

Intra-tumor heterogeneity of tumor-initiating cell (TIC) activity drives colorectal cancer (CRC) progression and therapy resistance. Here, we used single-cell RNA-sequencing of patient-derived CRC models to decipher distinct cell subpopulations based on their transcriptional profiles. Cell type-specific expression modules of stem-like, transit amplifying-like, and differentiated CRC cells resemble differentiation states of normal intestinal epithelial cells. Strikingly, identified subpopulations differ in proliferative activity and metabolic state. In summary, we here show at single-cell resolution that transcriptional heterogeneity identifies functional states during TIC differentiation. Furthermore, identified expression signatures are linked to patient prognosis. Targeting transcriptional states associated to cancer cell differentiation might unravel novel vulnerabilities in human CRC.

12.
Cancer Res ; 80(24): 5502-5514, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33087321

RESUMEN

The oncogene yes-associated protein (YAP) controls liver tumor initiation and progression via cell extrinsic functions by creating a tumor-supporting environment in conjunction with cell autonomous mechanisms. However, how YAP controls organization of the microenvironment and in particular the vascular niche, which contributes to liver disease and hepatocarcinogenesis, is poorly understood. To investigate heterotypic cell communication, we dissected murine and human liver endothelial cell (EC) populations into liver sinusoidal endothelial cells (LSEC) and continuous endothelial cells (CEC) through histomorphological and molecular characterization. In YAPS127A-induced tumorigenesis, a gradual replacement of LSECs by CECs was associated with dynamic changes in the expression of genes involved in paracrine communication. The formation of new communication hubs connecting CECs and LSECs included the hepatocyte growth factor (Hgf)/c-Met signaling pathway. In hepatocytes and tumor cells, YAP/TEA domain transcription factor 4 (TEAD4)-dependent transcriptional induction of osteopontin (Opn) stimulated c-Met expression in EC with CEC phenotype, which sensitized these cells to the promigratory effects of LSEC-derived Hgf. In human hepatocellular carcinoma, the presence of a migration-associated tip-cell signature correlated with poor clinical outcome and the loss of LSEC marker gene expression. The occurrence of c-MET-expressing CECs in human liver cancer samples was confirmed at the single-cell level. In summary, YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between LSECs and CECs via the HGF/c-MET axis. SIGNIFICANCE: YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between EC subpopulations. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5502/F1.large.jpg.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Comunicación Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Señalizadoras YAP
14.
Int J Cancer ; 147(2): 519-531, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32077087

RESUMEN

Disseminated tumor cells (dTCs) can frequently be detected in the bone marrow (BM) of colorectal cancer (CRC) patients, raising the possibility that the BM serves as a reservoir for metastatic tumor cells. Identification of dTCs in BM aspirates harbors the potential of assessing therapeutic outcome and directing therapy intensity with limited risk and effort. Still, the functional and prognostic relevance of dTCs is not fully established. We have previously shown that CRC cell clones can be traced to the BM of mice carrying patient-derived xenografts. However, cellular interactions, proliferative state and tumorigenicity of dTCs remain largely unknown. Here, we applied a coculture system modeling the microvascular niche and used immunofluorescence imaging of the murine BM to show that primary CRC cells migrate toward endothelial tubes. dTCs in the BM were rare, but detectable in mice with xenografts from most patient samples (8/10) predominantly at perivascular sites. Comparable to primary tumors, a substantial fraction of proliferating dTCs was detected in the BM. However, most dTCs were found as isolated cells, indicating that dividing dTCs rather separate than aggregate to metastatic clones-a phenomenon frequently observed in the microvascular niche model. Clonal tracking identified subsets of self-renewing tumor-initiating cells in the BM that formed tumors out of BM transplants, including one subset that did not drive primary tumor growth. Our results indicate an important role of the perivascular BM niche for CRC cell dissemination and show that dTCs can be a potential source for tumor relapse and tumor heterogeneity.


Asunto(s)
Médula Ósea/patología , Neoplasias Colorrectales/patología , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Mesenquimatosas/citología , Células Neoplásicas Circulantes/patología , Células Tumorales Cultivadas/citología , Animales , Médula Ósea/metabolismo , Rastreo Celular , Técnicas de Cocultivo , Neoplasias Colorrectales/metabolismo , Proteínas Fluorescentes Verdes/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Neoplásicas Circulantes/metabolismo , Imagen Óptica , Pronóstico , Nicho de Células Madre , Imagen de Lapso de Tiempo , Células Tumorales Cultivadas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
BMC Cancer ; 19(1): 1181, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796022

RESUMEN

BACKGROUND: While colorectal cancer (CRC) patients with localized disease have a favorable prognosis, the five-year-survival rate in patients with distant spread is still below 15%. Hence, a detailed understanding of the mechanisms regulating metastasis formation is essential to develop therapeutic strategies targeting metastasized CRC. The notch pathway has been shown to be involved in the metastatic spread of various tumor entities; however, the impact of its target gene HEYL remains unclear so far. METHODS: In this study, we functionally assessed the association between high HEYL expression and metastasis formation in human CRC. Therefore, we lentivirally overexpressed HEYL in two human patient-derived CRC cultures differing in their spontaneous metastasizing capacity and analyzed metastasis formation as well as tumor cell dissemination into the bone marrow after xenotransplantation into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. RESULTS: HEYL overexpression decreased tumor cell dissemination and the absolute numbers of formed metastases in a sub-renal capsular spontaneous metastasis formation model, addressing all steps of the metastatic cascade. In contrast, metastatic capacity was not decreased following intrasplenic xenotransplantation where the cells are placed directly into the blood circulation. CONCLUSION: These results suggest that HEYL negatively regulates metastasis formation in vivo presumably by inhibiting intravasation of metastasis-initiating cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Médula Ósea/secundario , Neoplasias Colorrectales/patología , Proteínas Represoras/metabolismo , Esferoides Celulares/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Médula Ósea/genética , Neoplasias de la Médula Ósea/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor Notch1/metabolismo , Proteínas Represoras/genética , Esferoides Celulares/metabolismo
16.
Sci Rep ; 9(1): 12367, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451731

RESUMEN

Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce "pheno-seq" to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama/patología , Línea Celular Tumoral , Linaje de la Célula/genética , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Genes Relacionados con las Neoplasias , Humanos , Células Madre Neoplásicas/patología , Fenotipo , Análisis de la Célula Individual
17.
J Clin Endocrinol Metab ; 104(11): 5225-5237, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31225875

RESUMEN

CONTEXT: Adipose tissue inflammation and dysregulated energy homeostasis are key mechanisms linking obesity and cancer. Distinct adipose tissue depots strongly differ in their metabolic profiles; however, comprehensive studies of depot-specific perturbations among patients with cancer are lacking. OBJECTIVE: We compared transcriptome profiles of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from patients with colorectal cancer and assessed the associations of different anthropometric measures with depot-specific gene expression. DESIGN: Whole transcriptomes of VAT and SAT were measured in 233 patients from the ColoCare Study, and visceral and subcutaneous fat area were quantified via CT. RESULTS: VAT compared with SAT showed elevated gene expression of cytokines, cell adhesion molecules, and key regulators of metabolic homeostasis. Increased fat area was associated with downregulated lipid and small molecule metabolism and upregulated inflammatory pathways in both compartments. Comparing these patterns between depots proved specific and more pronounced gene expression alterations in SAT and identified unique associations of integrins and lipid metabolism-related enzymes. VAT gene expression patterns that were associated with visceral fat area poorly overlapped with patterns associated with self-reported body mass index (BMI). However, subcutaneous fat area and BMI showed similar associations with SAT gene expression. CONCLUSIONS: This large-scale human study demonstrates pronounced disparities between distinct adipose tissue depots and reveals that BMI poorly correlates with fat mass-associated changes in VAT. Taken together, these results provide crucial evidence for the necessity to differentiate between distinct adipose tissue depots for a correct characterization of gene expression profiles that may affect metabolic health of patients with colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Grasa Intraabdominal/metabolismo , Grasa Subcutánea/metabolismo , Anciano , Neoplasias Colorrectales/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Transcriptoma
18.
Cells ; 8(2)2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30744205

RESUMEN

In highly aggressive malignancies like pancreatic cancer (PC), patient-derived tumor models can serve as disease-relevant models to understand disease-related biology as well as to guide clinical decision-making. In this study, we describe a two-step protocol allowing systematic establishment of patient-derived primary cultures from PC patient tumors. Initial xenotransplantation of surgically resected patient tumors (n = 134) into immunodeficient mice allows for efficient in vivo expansion of vital tumor cells and successful tumor expansion in 38% of patient tumors (51/134). Expansion xenografts closely recapitulate the histoarchitecture of their matching patients' primary tumors. Digestion of xenograft tumors and subsequent in vitro cultivation resulted in the successful generation of semi-adherent PC cultures of pure epithelial cell origin in 43.1% of the cases. The established primary cultures include diverse pathological types of PC: Pancreatic ductal adenocarcinoma (86.3%, 19/22), adenosquamous carcinoma (9.1%, 2/22) and ductal adenocarcinoma with oncocytic IPMN (4.5%, 1/22). We here provide a protocol to establish quality-controlled PC patient-derived primary cell cultures from heterogeneous PC patient tumors. In vitro preclinical models provide the basis for the identification and preclinical assessment of novel therapeutic opportunities targeting pancreatic cancer.


Asunto(s)
Modelos Biológicos , Neoplasias Pancreáticas/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
19.
Cell Stem Cell ; 23(1): 132-146.e9, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979988

RESUMEN

Genes that regulate hematopoietic stem cell (HSC) self-renewal, proliferation, and differentiation are tightly controlled by regulatory regions. However, mapping such regions relies on surface markers and immunophenotypic definition of HSCs. Here, we use γ-retroviral integration sites (γRV ISs) from a gene therapy trial for 10 patients with Wiskott-Aldrich syndrome to mark active enhancers and promoters in functionally defined long-term repopulating HSCs. Integration site clusters showed the highest ATAC-seq signals at HSC-specific peaks and strongly correlated with hematopoietic risk variants. Tagged genes were significantly enriched for HSC gene sets. We were able to map over 3,000 HSC regulatory regions in late-contributing HSCs, and we used these data to identify miR-10a and miR-335 as two miRNAs regulating early hematopoiesis. In this study, we show that viral insertion sites can be used as molecular tags to assess chromatin conformation on functionally defined cell populations, thereby providing a genome-wide resource for regulatory regions in human repopulating long-term HSCs.


Asunto(s)
Cromatina/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Diferenciación Celular , Proliferación Celular , Terapia Genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patología , Síndrome de Wiskott-Aldrich/terapia
20.
Cell Rep ; 23(11): 3407-3418, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29898408

RESUMEN

Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages. Importantly, colorectal carcinomas could be classified into the same methylation subtypes, reflecting their shared cell types of origin with adenomas. Further data analysis also revealed significantly reduced overall survival for one of the subtypes. Our results provide a concept for understanding the methylation patterns observed in colorectal cancer and provide opportunities for tumor subclassification and patient stratification.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/patología , Metilación de ADN , Adenoma/clasificación , Adenoma/genética , Adenoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/clasificación , Neoplasias Colorrectales/genética , Epigenómica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA