Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 932, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805448

RESUMEN

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

2.
Nat Mater ; 22(1): 73-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456873

RESUMEN

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1-yPb(IxBr1-x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.


Asunto(s)
Amidinas , Luz Solar , Cationes , Dimetilsulfóxido
3.
ACS Appl Mater Interfaces ; 15(1): 772-781, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36563084

RESUMEN

Vacuum deposition is a solvent-free method suitable for growing thin films of metal halide perovskite (MHP) semiconductors. However, most reports of high-efficiency solar cells based on such vacuum-deposited MHP films incorporate solution-processed hole transport layers (HTLs), thereby complicating prospects of industrial upscaling and potentially affecting the overall device stability. In this work, we investigate organometallic copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) as alternative, low-cost, and durable HTLs in all-vacuum-deposited solvent-free formamidinium-cesium lead triodide [CH(NH2)2]0.83Cs0.17PbI3 (FACsPbI3) perovskite solar cells. We elucidate that the CuPc HTL, when employed in an "inverted" p-i-n solar cell configuration, attains a solar-to-electrical power conversion efficiency of up to 13.9%. Importantly, unencapsulated devices as large as 1 cm2 exhibited excellent long-term stability, demonstrating no observable degradation in efficiency after more than 5000 h in storage and 3700 h under 85 °C thermal stressing in N2 atmosphere.

4.
Nat Commun ; 13(1): 4201, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859149

RESUMEN

Charge carrier mobility is a fundamental property of semiconductor materials that governs many electronic device characteristics. For metal halide perovskites, a wide range of charge carrier mobilities have been reported using different techniques. Mobilities are often estimated via transient methods assuming an initial charge carrier population after pulsed photoexcitation and measurement of photoconductivity via non-contact or contact techniques. For nanosecond to millisecond transient methods, early-time recombination and exciton-to-free-carrier ratio hinder accurate determination of free-carrier population after photoexcitation. By considering both effects, we estimate long-range charge carrier mobilities over a wide range of photoexcitation densities via transient photoconductivity measurements. We determine long-range mobilities for FA0.83Cs0.17Pb(I0.9Br0.1)3, (FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3 and CH3NH3PbI3-xClx polycrystalline films in the range of 0.3 to 6.7 cm2 V-1 s-1. We demonstrate how our data-processing technique can also reveal more precise mobility estimates from non-contact time-resolved microwave conductivity measurements. Importantly, our results indicate that the processing of polycrystalline films significantly affects their long-range mobility.

5.
ACS Energy Lett ; 7(6): 1903-1911, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35719271

RESUMEN

As perovskite-based photovoltaics near commercialization, it is imperative to develop industrial-scale defect-passivation techniques. Vapor deposition is a solvent-free fabrication technique that is widely implemented in industry and can be used to fabricate metal-halide perovskite thin films. We demonstrate markably improved growth and optoelectronic properties for vapor-deposited [CH(NH2)2]0.83Cs0.17PbI3 perovskite solar cells by partially substituting PbI2 for PbCl2 as the inorganic precursor. We find the partial substitution of PbI2 for PbCl2 enhances photoluminescence lifetimes from 5.6 ns to over 100 ns, photoluminescence quantum yields by more than an order of magnitude, and charge-carrier mobility from 46 cm2/(V s) to 56 cm2/(V s). This results in improved solar-cell power conversion efficiency, from 16.4% to 19.3% for the devices employing perovskite films deposited with 20% substitution of PbI2 for PbCl2. Our method presents a scalable, dry, and solvent-free route to reducing nonradiative recombination centers and hence improving the performance of vapor-deposited metal-halide perovskite solar cells.

6.
ACS Appl Energy Mater ; 4(10): 10603-10609, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34723138

RESUMEN

Charge transport in three-dimensional metal-halide perovskite semiconductors is due to a complex combination of ionic and electronic contributions, and its study is particularly relevant in light of their successful applications in photovoltaics as well as other opto- and microelectronic applications. Interestingly, the observation of field effect at room temperature in transistors based on solution-processed, polycrystalline, three-dimensional perovskite thin films has been elusive. In this work, we study the time-dependent electrical characteristics of field-effect transistors based on the model methylammonium lead iodide semiconductor and observe the drastic variations in output current, and therefore of apparent charge carrier mobility, as a function of the applied gate pulse duration. We infer this behavior to the accumulation of ions at the grain boundaries, which hamper the transport of carriers across the FET channel. This study reveals the dynamic nature of the field effect in solution-processed metal-halide perovskites and offers an investigation methodology useful to characterize charge carrier transport in such emerging semiconductors.

7.
ACS Energy Lett ; 6(3): 1087-1094, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33869770

RESUMEN

Space-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions. We show, using drift-diffusion (DD) simulations, that the ions strongly affect the measurement and that the usual analysis and interpretation of SCLC need to be refined. We highlight that the trap density and mobility cannot be directly quantified using classical methods. We discuss the advantages of pulsed SCLC for obtaining reliable data with minimal influence of the ionic motion. We then show that fitting the pulsed SCLC with DD modeling is a reliable method for extracting mobility, trap, and ion densities simultaneously. As a proof of concept, we obtain a trap density of 1.3 × 1013 cm-3, an ion density of 1.1 × 1013 cm-3, and a mobility of 13 cm2 V-1 s-1 for a MAPbBr3 single crystal.

8.
Science ; 369(6499): 96-102, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32631893

RESUMEN

Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.

9.
Micron ; 121: 53-65, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30947034

RESUMEN

We introduce laser-assisted Time-Resolved SEM (TR-SEM), joining Scanning Electron Microscopy and laser light excitation, to probe the long-term temporal evolution of optically excited charge distributions at the surface of Metal Ammonium Lead Triiodide (MAPbI3) hybrid perovskite thin films. Laser-assisted TR-SEM relies on the optically induced local modification of Secondary Electron (SE) detection yield to provide mapping of photoexcited potentials and charge dynamics at surfaces, and qualifies as a complementary approach to near-field probe microscopies and nonlinear photoemission spectroscopies for photovoltage measurements. Real-time imaging of evolving field patterns are provided on timescales compatible with SEM scanning rates, so that temporal resolution in the millisecond range can be ultimately envisaged. MAPbI3 is an outstanding light-sensitive material candidate for applications in solar light harvesting and photovoltaics, also appealing as an active system for light generation. In this work, the real time temporal evolution of optically induced SE contrast patterns in MAPbI3 is experimentally recorded, both under illumination by a 405 nm blue laser and after light removal, showing the occurrence of modifications related to photoinduced positive charge fields at surface. The long term evolution of these surface fields are tentatively attributed to ion migration within the film, under the action of the illumination gradient and the hole collecting substrate. This optical excitation is fully reversible in MAPbI3 over timescales of hours and a complete recovery of the system occurs within days. Permanent irradiation damage of the material is avoided by operating the SEM at 5 keV of energy and 1-10 pA of primary current. Optical excitation is provided by intense above-bandgap illumination (up to 50 W/cm2). TR-SEM patterns show a strong dependence on the geometry of SE collection. Measurements are taken at different axial orientations of the sample with respect to the entrance of the in-column detection system of the SEM and compared with numerical modeling of the SE detection process. This enables to single out the information regarding the local potential distribution. Results are interpreted by combining data about the spectral distribution of emitted SEs with the configuration of the electric and magnetic fields in the specimen chamber. The present modeling sets a robust basis for the understanding of photoinduced SE electron contrast.

10.
J Am Chem Soc ; 137(49): 15451-9, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26579724

RESUMEN

Despite rapid developments in both photovoltaic and light-emitting device performance, the understanding of the optoelectronic properties of hybrid lead halide perovskites is still incomplete. In particular, the polarizability of the material, the presence of molecular dipoles, and their influence on the dynamics of the photoexcitations remain an open issue to be clarified. Here, we investigate the effect of an applied external electric field on the photoexcited species of CH3NH3PbI3 thin films, both at room temperature and at low temperature, by monitoring the photoluminescence (PL) yield and PL decays. At room temperature we find evidence for electric-field-induced reduction of radiative bimolecular carrier recombination together with motion of charged defects that affects the nonradiative decay rate of the photoexcited species. At low temperature (190 K), we observe a field-induced enhancement of radiative free carrier recombination rates that lasts even after the removal of the field. We assign this to field-induced alignment of the molecular dipoles, which reduces the vibrational freedom of the lattice and the associated local screening and hence results in a stronger electron-hole interaction.

11.
ACS Appl Mater Interfaces ; 6(16): 14247-52, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25054377

RESUMEN

Polystyrene spheres are used to template TiO2 with a single layer of 300 nm wells which are infilled with PbS quantum dots to form a heterojunction solar cell. The porous well device has an efficiency of 5.7% while the simple planar junction is limited to 3.2%. Using a combination of optical absorption and photocurrent transient decay measurement we determined that the performance enhancement comes from a combination of enhanced optical absorption and increased carrier lifetime.

12.
ACS Nano ; 8(7): 7147-55, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24949826

RESUMEN

Solution-processed organometal trihalide perovskite solar cells are attracting increasing interest, leading to high performances over 15% in thin film architectures. Here, we probe the presence of sub gap states in both solid and mesosuperstructured perovskite films and determine that they strongly influence the photoconductivity response and splitting of the quasi-Fermi levels in films and solar cells. We find that while the planar perovskite films are superior to the mesosuperstructured films in terms of charge carrier mobility (in excess of 20 cm(2) V(-1) s(-1)) and emissivity, the planar heterojunction solar cells are limited in photovoltage by the presence of sub gap states and low intrinsic doping densities.

13.
J Phys Chem Lett ; 5(9): 1511-5, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26270088

RESUMEN

Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.

14.
J Phys Chem Lett ; 5(2): 279-84, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26270700

RESUMEN

We report the low-frequency resonant Raman spectrum of methylammonium lead-iodide, a prototypical perovskite for solar cells applications, on mesoporous Al2O3. The measured spectrum assignment is assisted by DFT simulations of the Raman spectra of suitable periodic and model systems. The bands at 62 and 94 cm(-1) are assigned respectively to the bending and to the stretching of the Pb-I bonds, and are thus diagnostic modes of the inorganic cage. We also assign the librations of the organic cations at 119 and 154 cm(-1). The broad, unstructured 200-400 cm(-1) features are assigned to the torsional mode of the methylammonium cations, which we propose as a marker of the orientational disorder of the material. Our study provides the basis to interpret the Raman spectra of organohalide perovskites, which may allow one to further understand the properties of this important class of materials in relation to their full exploitation in solar cells.

15.
Nano Lett ; 14(2): 724-30, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24341922

RESUMEN

The highest efficiencies in solution-processable perovskite-based solar cells have been achieved using an electron collection layer that requires sintering at 500 °C. This is unfavorable for low-cost production, applications on plastic substrates, and multijunction device architectures. Here we report a low-cost, solution-based deposition procedure utilizing nanocomposites of graphene and TiO2 nanoparticles as the electron collection layers in meso-superstructured perovskite solar cells. The graphene nanoflakes provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at temperatures no higher than 150 °C. These solar cells show remarkable photovoltaic performance with a power conversion efficiency up to 15.6%. This work demonstrates that graphene/metal oxide nanocomposites have the potential to contribute significantly toward the development of low-cost solar cells.

16.
Nat Commun ; 4: 2761, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24217714

RESUMEN

Organometal trihalide perovskite solar cells offer the promise of a low-cost easily manufacturable solar technology, compatible with large-scale low-temperature solution processing. Within 1 year of development, solar-to-electric power-conversion efficiencies have risen to over 15%, and further imminent improvements are expected. Here we show that this technology can be successfully made compatible with electron acceptor and donor materials generally used in organic photovoltaics. We demonstrate that a single thin film of the low-temperature solution-processed organometal trihalide perovskite absorber CH3NH3PbI3-xClx, sandwiched between organic contacts can exhibit devices with power-conversion efficiency of up to 10% on glass substrates and over 6% on flexible polymer substrates. This work represents an important step forward, as it removes most barriers to adoption of the perovskite technology by the organic photovoltaic community, and can thus utilize the extensive existing knowledge of hybrid interfaces for further device improvements and flexible processing platforms.

17.
Phys Chem Chem Phys ; 15(7): 2572-9, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23310946

RESUMEN

Lithium salts have been shown to dramatically increase the conductivity in a broad range of polymeric and small molecule organic semiconductors (OSs). Here we demonstrate and identify the mechanism by which Li(+) p-dopes OSs in the presence of oxygen. After we established the lithium doping mechanism, we re-evaluate the role of lithium bis(trifluoromethylsulfonyl)-imide (Li-TFSI) in 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-Spirobifluorene (Spiro-OMeTAD) based solid-state dye-sensitized solar cells (ss-DSSCs). The doping mechanism consumes Li(+) during the device operation, which poses a problem, since the lithium salt is required at the dye-sensitized heterojunction to enhance charge generation. This compromise highlights that new additives are required to maximize the performance and the long-term stability of ss-DSSCs.

18.
Phys Chem Chem Phys ; 13(32): 14387-93, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21687882

RESUMEN

The electrical stability of low-voltage organic transistors based on phosphonic acid self-assembled monolayer (SAM) dielectrics is investigated using four different semiconductors. The threshold voltage shift in these devices shows a stretched-exponential time dependence under continuous gate bias with a relaxation time in the range of 10(3)-10(5) s, at room temperature. Differences in the bias instability of transistors based on different self-assembled monolayers and organic semiconductors suggest that charge trapping into localized states in the semiconductor is not the only mechanism responsible for the observed instability. By applying 1-5 s long programming voltage pulses of 2-3 V in amplitude, a large reversible threshold voltage shift can be produced. The retention time of the programmed state was measured to be on the order of 30 h. The combination of low voltage operation and relatively long retention times makes these devices interesting for ultra-low power memory applications.


Asunto(s)
Membranas Artificiales , Nanoestructuras/química , Transistores Electrónicos , Estructura Molecular , Organofosfonatos/química , Semiconductores , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA