Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2032, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263232

RESUMEN

Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology. There exists a high missed detection rate and incomplete removal of colonic polyps. To assist in clinical procedures and reduce missed rates, automated methods for detecting and segmenting polyps using machine learning have been achieved in past years. However, the major drawback in most of these methods is their ability to generalise to out-of-sample unseen datasets from different centres, populations, modalities, and acquisition systems. To test this hypothesis rigorously, we, together with expert gastroenterologists, curated a multi-centre and multi-population dataset acquired from six different colonoscopy systems and challenged the computational expert teams to develop robust automated detection and segmentation methods in a crowd-sourcing Endoscopic computer vision challenge. This work put forward rigorous generalisability tests and assesses the usability of devised deep learning methods in dynamic and actual clinical colonoscopy procedures. We analyse the results of four top performing teams for the detection task and five top performing teams for the segmentation task. Our analyses demonstrate that the top-ranking teams concentrated mainly on accuracy over the real-time performance required for clinical applicability. We further dissect the devised methods and provide an experiment-based hypothesis that reveals the need for improved generalisability to tackle diversity present in multi-centre datasets and routine clinical procedures.


Asunto(s)
Colaboración de las Masas , Aprendizaje Profundo , Pólipos , Humanos , Colonoscopía , Computadores
2.
IEEE Trans Med Imaging ; 43(1): 542-557, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37713220

RESUMEN

The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images. To address this issue, we propose the Artificial Intelligence for Robust Glaucoma Screening (AIROGS) challenge. This challenge includes a large dataset of around 113,000 images from about 60,000 patients and 500 different screening centers, and encourages the development of algorithms that are robust to ungradable and unexpected input data. We evaluated solutions from 14 teams in this paper and found that the best teams performed similarly to a set of 20 expert ophthalmologists and optometrists. The highest-scoring team achieved an area under the receiver operating characteristic curve of 0.99 (95% CI: 0.98-0.99) for detecting ungradable images on-the-fly. Additionally, many of the algorithms showed robust performance when tested on three other publicly available datasets. These results demonstrate the feasibility of robust AI-enabled glaucoma screening.


Asunto(s)
Inteligencia Artificial , Glaucoma , Humanos , Glaucoma/diagnóstico por imagen , Fondo de Ojo , Técnicas de Diagnóstico Oftalmológico , Algoritmos
3.
Med Image Anal ; 56: 44-67, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181343

RESUMEN

The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of medical imaging applications on the future of healthcare.


Asunto(s)
Diagnóstico por Imagen , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Anatómicos , Modelos Estadísticos , Aprendizaje Profundo , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-34113925

RESUMEN

An abdominal aortic aneurysm (AAA) is a ballooning of the abdominal aorta, that if not treated tends to grow and rupture. Computed Tomography Angiography (CTA) is the main imaging modality for the management of AAAs, and segmenting them is essential for AAA rupture risk and disease progression assessment. Previous works have shown that Convolutional Neural Networks (CNNs) can accurately segment AAAs, but have the limitation of requiring large amounts of annotated data to train the networks. Thus, in this work we propose a methodology to train a CNN only with images generated with a synthetic shape model, and test its generalization and ability to segment AAAs from new original CTA scans. The synthetic images are created from realistic deformations generated by applying principal component analysis to the deformation fields obtained from the registration of few datasets. The results show that the performance of a CNN trained with synthetic data to segment AAAs from new scans is comparable to the one of a network trained with real images. This suggests that the proposed methodology may be applied to generate images and train a CNN to segment other types of aneurysms, reducing the burden of obtaining large annotated image databases.

5.
Med Image Anal ; 51: 61-88, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30390513

RESUMEN

Fetal imaging is a burgeoning topic. New advancements in both magnetic resonance imaging and (3D) ultrasound currently allow doctors to diagnose fetal structural abnormalities such as those involved in twin-to-twin transfusion syndrome, gestational diabetes mellitus, pulmonary sequestration and hypoplasia, congenital heart disease, diaphragmatic hernia, ventriculomegaly, etc. Considering the continued breakthroughs in utero image analysis and (3D) reconstruction models, it is now possible to gain more insight into the ongoing development of the fetus. Best prenatal diagnosis performances rely on the conscious preparation of the clinicians in terms of fetal anatomy knowledge. Therefore, fetal imaging will likely span and increase its prevalence in the forthcoming years. This review covers state-of-the-art segmentation and classification methodologies for the whole fetus and, more specifically, the fetal brain, lungs, liver, heart and placenta in magnetic resonance imaging and (3D) ultrasound for the first time. Potential applications of the aforementioned methods into clinical settings are also inspected. Finally, improvements in existing approaches as well as most promising avenues to new areas of research are briefly outlined.


Asunto(s)
Enfermedades Fetales/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Diagnóstico Prenatal/métodos , Ultrasonografía Prenatal/métodos , Algoritmos , Femenino , Humanos , Embarazo
6.
Artículo en Inglés | MEDLINE | ID: mdl-27872840

RESUMEN

Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

7.
IEEE Trans Med Imaging ; 25(8): 1052-67, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16894998

RESUMEN

We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence magnetic resonance imaging (MRI) of the brain. One common feature of most forms of prion protein diseases is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted magnetic resonance (MR) images. We employ T1, T2, and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data are registered to a probabilistic atlas and normalized in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas are employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance with the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (sCJD), in agreement with the histological data. The algorithm permitted the classification of the intensities of abnormal signals in sCJD patient FLAIR images with a higher hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD (vCJD) patients, in an attempt to create an automatic classification tool of human spongiform encephalopathies.


Asunto(s)
Inteligencia Artificial , Ganglios Basales/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Simulación por Computador , Síndrome de Creutzfeldt-Jakob/clasificación , Diagnóstico Diferencial , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Modelos Biológicos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...