Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Intervalo de año de publicación
1.
Int J Parasitol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759833

RESUMEN

Chagas disease affects millions of people in Colombia and worldwide, with its transmission influenced by ecological, environmental, and anthropogenic factors. There is a notable correlation between vector transmission cycles and the habitats of insect vectors of the parasite. However, the scale at which these cycles operate remains uncertain. While individual triatomine ecotopes such as palms provide conditions for isolated transmission cycles, recent studies examining triatomine blood sources in various habitats suggest a more intricate network of transmission cycles, linking wild ecotopes with human dwellings. This study aims to provide further evidence on the complexity of the scale of Trypanosoma cruzi transmission cycles, by exploring the different blood sources among developmental stages of infected triatomines in different habitats. We evaluated infection rates, parasite loads, feeding sources, and the distribution of Rhodnius prolixus insects in Attalea butyracea palms across three distinct habitats in Casanare, Colombia: peridomestics, pastures, and woodlands. Our results show that there is no clear independence in transmission cycles in each environment. Analyses of feeding sources suggest the movement of insects and mammals (primarily bats and didelphids) among habitats. A significant association was found between habitat and instar stages in collected R. prolixus. The N1 stage was correlated with pasture and woodland, while the N4 stage was related to pasture. Additionally, adult insects exhibited higher T. cruzi loads than N1, N2, and N3. We observed higher T. cruzi loads in insects captured in dwelling and pasture habitats, compared with those captured in woodland areas. Effective Chagas disease control strategies must consider the complexity of transmission cycles and the interplay between domestic and sylvatic populations of mammals and vectors.

2.
Vet Res Commun ; 48(4): 2657-2662, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598117

RESUMEN

The global presence of SARS-CoV-2 in household pets is acknowledged, yet documentation remains scarce, leaving many regions unexplored. Thus, our study sought to fill this gap by investigating SARS-CoV-2 presence in dogs visiting veterinary clinics during the third pandemic peak in eastern Colombia. We collected and analyzed 43 oropharyngeal and rectal swabs using real-time PCR assays targeting the Envelope Gene of SARS-CoV-2. Out of these, two dogs tested positive, indicating an infection rate of 4.7%. Further examination through complete sequencing and phylogenetic analysis revealed the lineage B.1.621 for the SARS-CoV-2 genome. Consequently, our study unveils the first documented cases of Canis lupus familiaris infected with the Mu variant of SARS-CoV-2, the variant with the most death burden during the whole pandemic in Colombia. Remarkably, these cases presented mild and reversible respiratory and gastrointestinal symptoms, or no clinical manifestations at all. This sheds light on the virus's interaction with our four-legged companions, offering valuable insights into its transmission dynamics and potential effects on animal health.


Asunto(s)
COVID-19 , Enfermedades de los Perros , Hospitales Veterinarios , SARS-CoV-2 , Animales , Perros , Colombia/epidemiología , COVID-19/epidemiología , COVID-19/veterinaria , COVID-19/virología , COVID-19/transmisión , Enfermedades de los Perros/virología , Enfermedades de los Perros/epidemiología , SARS-CoV-2/genética , Filogenia , Masculino , Femenino
3.
Heliyon ; 10(5): e27452, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463823

RESUMEN

The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.

4.
PLoS Negl Trop Dis ; 18(2): e0011981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377140

RESUMEN

BACKGROUND: Chagas disease, affecting approximately eight million individuals in tropical regions, is primarily transmitted by vectors. Rhodnius prolixus, a triatomine vector, commonly inhabits in ecotopes with diverse palm tree species, creating optimal conditions for vector proliferation. This study aims to explore the transmission ecology of Trypanosoma cruzi, the causative parasite of Chagas disease, by investigating the feeding patterns and natural infection rates of R. prolixus specimens collected from various wild palm species in the Colombian Orinoco region. MATERIALS AND METHODS: To achieve this objective, we sampled 35 individuals from three palm species (Attalea butyracea, Acrocomia aculeata, and Mauritia flexuosa) in a riparian forest in the Casanare department of eastern Colombia, totaling 105 sampled palm trees. DNA was extracted and analyzed from 115 R. prolixus specimens at different developmental stages using quantitative PCR (qPCR) for T. cruzi detection and identification of discrete typing units. Feeding preferences were determined by sequencing the 12S rRNA gene amplicon through next-generation sequencing. RESULTS: A total of 676 R. prolixus specimens were collected from the sampled palms. The study revealed variation in population densities and developmental stages of R. prolixus among palm tree species, with higher densities observed in A. butyracea and lower densities in M. flexuosa. TcI was the exclusive T. cruzi discrete typing unit (DTU) found, with infection frequency positively correlated with R. prolixus abundance. Insects captured in A. butyracea exhibited higher abundance and infection rates than those from other palm species. The feeding sources comprised 13 mammal species, showing no significant differences between palm species in terms of blood sources. However, Didelphis marsupialis and Homo sapiens were present in all examined R. prolixus, and Dasypus novemcinctus was found in 89.47% of the insects. CONCLUSION: This study highlights the significance of wild palms, particularly A. butyracea, as a substantial risk factor for T. cruzi transmission to humans in these environments. High population densities and infection rates of R. prolixus were observed in each examined palm tree species.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Triatominae , Trypanosoma cruzi , Animales , Humanos , Árboles , Trypanosoma cruzi/genética , Colombia/epidemiología , Enfermedad de Chagas/epidemiología , Armadillos
5.
J Mol Diagn ; 26(5): 323-336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360211

RESUMEN

Trypanosomatids, including Trypanosoma and Leishmania species, present significant medical and veterinary challenges, causing substantial economic losses, health complications, and even fatalities. Diagnosing and genotyping these species and their genotypes is often complex, involving multiple steps. This study aimed to develop an amplicon-based sequencing (ABS) method using Oxford Nanopore long-read sequencing to enhance Trypanosomatid detection and genotyping. The 18S rDNA gene was targeted for its inter-species conservation. The Trypanosomatid-ABS method effectively distinguished between 11 Trypanosoma species (including Trypanosoma evansi, Trypanosoma theileri, Trypanosoma vivax, and Trypanosoma rangeli) and 6 Trypanosoma cruzi discrete typing units (TcI to TcVI and TcBat), showing strong concordance with conventional methods (κ index of 0.729, P < 0.001). It detected co-infections between Trypanosomatid genera and T. cruzi, with a limit of detection of one parasite per mL. The method was successfully applied to human, animal, and triatomine samples. Notably, TcI predominated in chronic Chagas samples, whereas TcII and TcIV were found in the acute stage. Triatomine vectors exhibited diverse Trypanosomatid infections, with Triatoma dimidiata mainly infected with TcI and occasional TcBat co-infections, and Rhodnius prolixus showing TcI and TcII infections, along with T. rangeli co-infections and mixed TcII infections. Animals were infected with T. vivax, T. theileri, and T. evansi. The ABS method's high resolution, sensitivity, and accuracy make it a valuable tool for understanding Trypanosomatid dynamics, enhancing disease control strategies, and enabling targeted interventions.


Asunto(s)
Enfermedad de Chagas , Coinfección , Secuenciación de Nanoporos , Trypanosoma cruzi , Humanos , Animales , Genotipo , ARN Ribosómico 18S/genética , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/genética
6.
Parasit Vectors ; 16(1): 458, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111024

RESUMEN

BACKGROUND: Leishmaniasis is a parasitic disease caused by obligate intracellular protozoa of the genus Leishmania. This infection is characterized by a wide range of clinical manifestations, with symptoms greatly dependent on the causal parasitic species. Here we present the design and application of a new 70-kDa heat shock protein gene (hsp70)-based marker of 771 bp (HSP70-Long). We evaluated its sensitivity, specificity and diagnostic performance employing an amplicon-based MinION™ DNA sequencing assay to identify different Leishmania species in clinical samples from humans and reservoirs with cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We also conducted a comparative analysis between our novel marker and a previously published HSP70 marker known as HSP70-Short, which spans 330 bp. METHODS: A dataset of 27 samples from Colombia, Venezuela and the USA was assembled, of which 26 samples were collected from humans, dogs and cats affected by CL and one sample was collected from a dog with VL in the USA (but originally from Greece). DNA was extracted from each sample and underwent conventional PCR amplification utilizing two distinct HSP70 markers: HSP70-Short and HSP70-Long. The subsequent products were then sequenced using the MinION™ sequencing platform. RESULTS: The results highlight the distinct characteristics of the newly devised HSP70-Long primer, showcasing the notable specificity of this primer, although its sensitivity is lower than that of the HSP70-Short marker. Notably, both markers demonstrated strong discriminatory capabilities, not only in distinguishing between different species within the Leishmania genus but also in identifying instances of coinfection. CONCLUSIONS: This study underscores the outstanding specificity and effectiveness of HSP70-based MinION™ sequencing, in successfully discriminating between diverse Leishmania species and identifying coinfection events within samples sourced from leishmaniasis cases.


Asunto(s)
Enfermedades de los Gatos , Coinfección , Enfermedades de los Perros , Leishmania , Leishmaniasis Cutánea , Leishmaniasis Visceral , Secuenciación de Nanoporos , Humanos , Animales , Perros , Gatos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología , Leishmania/genética , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/veterinaria , Proteínas HSP70 de Choque Térmico/genética
7.
Mem. Inst. Oswaldo Cruz ; 117: e210375, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1375919

RESUMEN

BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus of zoonotic origin that can bind to ACE2 receptors on the cells of many wild and domestic mammals. Studies have shown that the virus can circulate among animals mutate, lead to animal-to-human zoonotic jump, and further onward spread between humans. Infection in pets is unusual, and there are few human-to-pet transmission reports worldwide. OBJECTIVE To describe the SARS-CoV-2 infection in a domestic animal in Córdoba, Colombian Caribbean region. METHODS A cross-sectional molecular surveillance study was carried out, oral and rectal swabs were taken from cats and dogs living with people diagnosed with coronavirus disease 2019 (COVID-19). RESULTS SARS-CoV-2 was found in a cat living with a person with COVID-19. Genome sequencing showed that the B.1.111 lineage caused the infection in the cat. The owner's sample could not be sequenced. The lineage is predominant in Colombia, and this variant is characterised by the presence of the D614D and Q57H mutation. CONCLUSION The present work is the first report of an infected cat with SARS-CoV-2 with whole-genome sequencing in Colombia. It highlights the importance of detecting SARS-CoV-2 mutations that could promote the transmissibility of this new coronavirus. There is still a significant information gap on human-to-cat-to-human infection; we encourage self-isolation measures between COVID-19 patients and companion animals. The findings of this study give a preliminary view of the current panorama of SARS-CoV-2 infection in animals in Colombia.

8.
Mem. Inst. Oswaldo Cruz ; 115: e190413, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1101274

RESUMEN

BACKGROUND The leishmaniases are complex neglected diseases caused by protozoan parasites of the genus Leishmania. Leishmania braziliensis is the main etiological agent of cutaneous leishmaniasis in the New World. In recent studies, genomic changes such as chromosome and gene copy number variations (CNVs), as well as transcriptomic changes have been highlighted as mechanisms used by Leishmania species to adapt to stress situations. OBJECTIVES The aim of this study was to determine the effect of short-term minor temperature shifts in the genomic and transcriptomic responses of L. braziliensis promastigotes in vitro. METHODS Growth curves, genome and transcriptome sequencing of L. braziliensis promastigotes were conducted from cultures exposed to three different temperatures (24ºC, 28ºC and 30ºC) compared with the control temperature (26ºC). FINDINGS Our results showed a decrease in L. braziliensis proliferation at 30ºC, with around 3% of the genes showing CNVs at each temperature, and transcriptomic changes in genes encoding amastin surface-like proteins, heat shock proteins and transport proteins, which may indicate a direct response to temperature stress. MAIN CONCLUSIONS This study provides evidence that L. braziliensis promastigotes exhibit a decrease in cell density, and noticeable changes in the transcriptomic profiles. However, there were not perceptible changes at chromosome CNVs and only ~3% of the genes changed their copies in each treatment.


Asunto(s)
Animales , Temperatura , Leishmania braziliensis/genética , Adaptación Fisiológica/genética , Variaciones en el Número de Copia de ADN/genética , Transcriptoma/genética , Adaptación Fisiológica/fisiología , Perfilación de la Expresión Génica , Perfil Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...