Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 242: 117623, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956753

RESUMEN

Lake Steinsfjorden, an important noble crayfish (Astacus astacus) habitat, is often affected by blooms of Planktothrix spp. that produce microcystins (MCs). A poor correlation between MCs by ELISA in the water and in crayfish tissue in a study in 2015 prompted further investigation by LC-HRMS. LC-HRMS analyses of filters from water samples and on selected crayfish tissue extracts from the 2015 study revealed the presence of known and previously unreported MCs. Crayfish samples from May and June 2015 were dominated by MCs from the Planktothrix bloom, whereas in September novel MCs that appeared to be metabolites of MC-LR were dominant, even though neither these nor MC-LR were detected in the water in 2015. A water sample from October 2016 also showed MCs typical of Planktothrix (i.e., [d-Asp3]- and [d-Asp3,Dhb7]MC-RR and -LR), but low levels of MC-RR and MC-LR were detected in the lake water for the first time. In late summer and autumn, the MC profiles of crayfish were dominated by the homonorvaline (Hnv) variant MC-LHnv, a putative metabolite of MC-LR. Taken together, ELISA, LC-HRMS and previous PCR analyses showed that although Planktothrix was part of the crayfish diet, it was not the sole source of MCs in the crayfish. Possibly, crayfish in Lake Steinsfjorden may be ingesting MCs from benthic cyanobacteria or from contaminated prey. Therefore, information on the cyanobacterial or MC content in the water column cannot safely be used to make predictions about MC concentrations in the crayfish in Lake Steinsfjorden. Interestingly, the results also show that targeted LC-MS analysis of the crayfish would at times have underestimated their MC content by nearly an order of magnitude, even if all previously reported MC variants had been included in the analysis.


Asunto(s)
Cianobacterias , Lagos , Animales , Lagos/microbiología , Astacoidea , Agua , Microcistinas/análisis , Noruega
2.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994377

RESUMEN

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Asunto(s)
Cianobacterias , Fitoplancton , Lagos/microbiología , Sustancias Húmicas , Eutrofización , Nutrientes , Fósforo/análisis , China
3.
Front Plant Sci ; 14: 1096181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938048

RESUMEN

In Europe, the genus Tolypella (Characeae) comprises four to eight Tolypella taxa in sections Rothia and Tolypella that have been distinguished by vegetative morphology and gametangial characters such as antheridial size and oospore wall ornamentation. However, morphological differentiation is difficult in some cases due to overlapping and variable vegetative features, which in many cases are difficult to observe clearly. To clarify the taxonomic status of the five European taxa of Tolypella in section Tolypella, sequence data of the plastid genes atpB, rbcL and psbC for Tolypella glomerata (Desv.) Leonh., Tolypella hispanica Allen, Tolypella nidifica (O.F. Müll.) A. Braun, Tolypella normaniana (Nordst.) Nordst. and Tolypella salina Cor. were combined with data on oospore morphology, including oospore wall ornamentation. Gene sequence data identified five distinct clusters, but they were not consistent with the morphologically identified five taxa. T. glomerata consisted of some of the samples morphologically identified as T. glomerata and seven samples of T. normaniana, while the remaining T. glomerata samples clustered with specimens of unclear affiliation (Tolypella sp.). We identified two clusters of T. hispanica within the European material: cluster T. hispanica I consisted of samples from various locations, whereas the second cluster (T. hispanica II) consisted of samples of T. hispanica from Sardinia Island. The remaining cluster consisted of all the specimens that had been determined as T. salina or T. nidifica in addition to two specimens of T. normaniana. Oospore morphology was most clearly distinguishable for T. glomerata. Oospore characteristics for all other taxa were not as informative but showed some geographical and/or environmentally influenced differences, especially for T. nidifica and T. salina. Our results suggest the need to further check the different taxonomy of Tolypella sect. Tolypella in which specimens normally identified as T. glomerata might be two different taxa, T. glomerata and an unidentified taxon; T. nidifica and T. salina are not separate taxa; T. normaniana is a diminutive variant of two different Tolypella taxa; and T. hispanica comprises two different taxa, one from the Mediterranean island Sardinia.

4.
Toxins (Basel) ; 12(5)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380720

RESUMEN

Lake Steinsfjorden, an important Norwegian location for noble crayfish (Astacus astacus), is often affected by cyanobacterial blooms caused by microcystin (MC)-producing Planktothrix spp. The impact of MCs on noble crayfish as a food source and crayfish health is largely unknown. We investigated the quantities and correlations of MCs in noble crayfish and lake water during and after a cyanobacterial bloom peaking in June-July 2015. Noble crayfish and water samples were collected monthly from June to October 2015 and in October 2016. The content of MCs was analysed by ELISA from tail muscle, intestine, stomach and hepatopancreas. PCR analysis for Planktothrix gene markers was performed on crayfish stomach content. Water samples were analysed for phytoplankton composition, biomass and MCs. PCR-positive stomach contents indicated Planktothrix to be part of the noble crayfish diet. Concentrations of MCs were highest in the hepatopancreas, stomach and intestine, peaking in August-September. Tail muscle contained low concentrations of MCs. Similar levels of MCs were found in crayfish from 2016. Except in September 2015, a normal portion of boiled noble crayfish tails was below the tolerable daily intake (TDI) for MCs for humans. Removing the intestine more than halved the content of MCs and seems a reasonable precautionary measure for noble crayfish consumers.


Asunto(s)
Astacoidea/microbiología , Microbiología de Alimentos , Agua Dulce/microbiología , Floraciones de Algas Nocivas , Lagos/microbiología , Microcistinas/metabolismo , Planktothrix/metabolismo , Mariscos/microbiología , Microbiología del Agua , Animales , Astacoidea/metabolismo , Carga Corporal (Radioterapia) , Monitoreo del Ambiente , Cadena Alimentaria , Humanos , Nivel sin Efectos Adversos Observados , Noruega , Planktothrix/genética , Medición de Riesgo , Factores de Tiempo , Distribución Tisular
5.
Toxins (Basel) ; 12(4)2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272622

RESUMEN

Meiktila Lake is a shallow reservoir located close to Meiktila city in central Myanmar. Its water is used for irrigation, domestic purposes and drinking water. No detailed study of the presence of cyanobacteria and their potential toxin production has been conducted so far. To ascertain the cyanobacterial composition and presence of cyanobacterial toxins in Meiktila Lake, water samples were collected in March and November 2017 and investigated for physico-chemical and biological parameters. Phytoplankton composition and biomass determination revealed that most of the samples were dominated by the cyanobacterium Raphidiopsis raciborskii. In a polyphasic approach, seven isolated cyanobacterial strains were classified morphologically and phylogenetically as R. raciborskii, and Microcystis spp. and tested for microcystins (MCs), cylindrospermopsins (CYNs), saxitoxins and anatoxins by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry (LC-MS). ELISA and LC-MS analyses confirmed CYNs in three of the five Raphidiopsis strains between 1.8 and 9.8 µg mg-1 fresh weight. Both Microcystis strains produced MCs, one strain 52 congeners and the other strain 20 congeners, including 22 previously unreported variants. Due to the presence of CYN- and MC-producing cyanobacteria, harmful effects on humans, domestic and wild animals cannot be excluded in Meiktila Lake.


Asunto(s)
Alcaloides/metabolismo , Cylindrospermopsis/metabolismo , Lagos/microbiología , Microcistinas/metabolismo , Microcystis/metabolismo , Microbiología del Agua , Cromatografía Liquida , Toxinas de Cianobacterias , Cylindrospermopsis/genética , Monitoreo del Ambiente , Ensayo de Inmunoadsorción Enzimática , Microcystis/clasificación , Microcystis/genética , Mianmar , Filogenia , Densidad de Población , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
6.
PLoS One ; 13(7): e0200774, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30024929

RESUMEN

Anatoxin-a and homoanatoxin-a are neurotoxic cyanotoxins produced by benthic and planktonic cyanobacteria worldwide. These toxins are produced by the cyanobacterial genera Dolichospermum, Cuspidothrix, Phormidium, Oscillatoria, Tychonema and Cylindrospermum. In the present study the ana gene clusters (anaA-anaG; c. 21.1 kilobases) of two anatoxin producing Cuspidothrix issatschenkoi strains from Germany: (NIVA-CYA 711) and New Zealand (CAWBG02) were sequenced and compared with the ana gene clusters of two C. issatschenkoi strains from Japan (RM-6 and LBRI48) and one from China (CHABD3). All five ana gene clusters are characterized by the same gene order for anaA-anaG. Similarities were highest (99.56-99.57%) between German (NIVA-CYA 711), New Zealand (CAWBG02) and Chinese (CHABD3) strains. Similarities were lower (91.40-91.67%) when compared to the Japanese strains (RM-6 and LBRI48). Collectively, 2,037 variable sites (328 single nucleotide polymorphisms and 9 insertions/deletions, comprising 1,709 nucleotides) were found in the ana gene clusters of the German, New Zealand and Japanese strains compared to the Chinese strain (CHABD3). The ana gene clusters of the German (NIVA-CYA 711), New Zealand (CAWBG02) and Japanese (RM-6 and LBRI48) strains were characterized by 83, 84, 255 and 231 SNP's compared to the Chinese strain (CHABD3), respectively. The anaE and anaF genes showed the highest variability in all five strains and are recommended as the best genetic markers for further phylogenetic studies of the ana gene cluster from C. issatschenkoi.


Asunto(s)
Cianobacterias/genética , Familia de Multigenes/genética , Toxinas Bacterianas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , China , Toxinas de Cianobacterias , Alemania , Japón , Nueva Zelanda , Polimorfismo de Nucleótido Simple/genética , Tropanos/metabolismo
7.
Harmful Algae ; 67: 1-12, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28755712

RESUMEN

In the last decades, the cyanobacterium Dolichospermum lemmermannii showed an increasing spread to Southern Europe, raising serious concerns due to its ability to produce cyanotoxins. The widening of its geographic distribution and the observation of strains showing high optimum temperature underline its ecological heterogeneity, suggesting the existence of different ecotypes. To investigate its biogeography, new isolates from different European water bodies, together with strains maintained by the Norwegian Institute for Water Research Culture Collection of Algae, were genetically characterised for the 16S rRNA gene and compared with strains obtained from public repositories. Geographic distance highly influenced the differentiation of genotypes, further suggesting the concurrent role of geographic isolation, physical barriers and environmental factors in promoting the establishment of phylogenetic lineages adapted to specific habitats. Differences among populations were also examined by morphological analysis and evaluating the toxic potential of single strains, which revealed the exclusive ability of North European strains to produce microcystins, whereas the populations in Southern Europe tested negative for a wide range of cyanotoxins. The high dispersion ability and the existence of toxic genotypes indicate the possible spread of harmful blooms in other temperate regions.


Asunto(s)
Cianobacterias/clasificación , Floraciones de Algas Nocivas , Microcistinas/biosíntesis , Filogeografía , Cianobacterias/aislamiento & purificación , Cianobacterias/ultraestructura , Funciones de Verosimilitud , Filogenia , Análisis de Componente Principal , ARN Ribosómico 16S/genética
8.
PLoS One ; 11(12): e0167552, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907126

RESUMEN

Paralytic shellfish poisoning (PSP) toxin production has been detected worldwide in the cyanobacterial genera Anabaena, Lyngbya, Scytonema, Cuspidothrix and Aphanizomenon. In Europe Aphanizomenon gracile and Cuspidothrix issatschenkoi are the only known producers of PSP toxins and are found in Southwest and Central European freshwater bodies. In this study the PSP toxin producing Aphanizomenon sp. strain NIVA-CYA 851 was isolated from the Norwegian Lake Hillestadvannet. In a polyphasic approach NIVA-CYA 851 was morphologically and phylogenetically classified, and investigated for toxin production. The strain NIVA-CYA 851 was identified as A. gracile using 16S rRNA gene phylogeny and was confirmed to produce neosaxitoxin, saxitoxin and gonyautoxin 5 by LC-MS. The whole sxt gene clusters (circa 27.3 kb) of four A. gracile strains: NIVA-CYA 851 (Norway); NIVA-CYA 655 & NIVA-CYA 676 (Germany); and UAM 529 (Spain), all from latitudes between 40° and 59° North were sequenced and compared with the sxt gene cluster of reference strain A. gracile NH-5 from the USA. All five sxt gene clusters are highly conserved with similarities exceeding 99.4%, but they differ slightly in the number and presence of single nucleotide polymorphisms (SNPs) and insertions/deletions (In/Dels). Altogether 178 variable sites (44 SNPs and 4 In/Dels, comprising 134 nucleotides) were found in the sxt gene clusters of the Norwegian, German and Spanish strains compared to the reference strain. Thirty-nine SNPs were located in 16 of the 27 coding regions. The sxt gene clusters of NIVA-CYA 851, NIVA-CYA 655, NIVA-CYA 676 and UAM 529, were characterized by 15, 16, 19 and 23 SNPs respectively. Only the Norwegian strain NIVA-CYA 851 possessed an insertion of 126 base pairs (bp) in the noncoding area between the sxtA and sxtE genes and a deletion of 6 nucleotides in the sxtN gene. The sxtI gene showed the highest variability and is recommended as the best genetic marker for further phylogenetic studies of the sxt gene cluster of A. gracile. This study confirms for the first time the role of A. gracile as a PSP toxin producer in Norwegian waters, representing the northernmost occurrence of PSP toxin producing A. gracile in Europe known so far.


Asunto(s)
Aphanizomenon/genética , Mutación INDEL , Polimorfismo de Nucleótido Simple , ARN Ribosómico 16S/genética , Saxitoxina/análogos & derivados , Saxitoxina/genética , Aphanizomenon/clasificación , Aphanizomenon/patogenicidad , Organismos Acuáticos , Secuencia de Bases , Secuencia Conservada , Genes Bacterianos , Alemania , Lagos/microbiología , Familia de Multigenes , Noruega , Sistemas de Lectura Abierta , Filogenia , Saxitoxina/biosíntesis , España , Estados Unidos
9.
Chem Res Toxicol ; 29(5): 860-70, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-26999366

RESUMEN

Microcystins are potent cyclic heptapeptide toxins found in many freshwater cyanobacteria. Most microcystins contain an α,ß-unsaturated amide that can react with thiol-containing amino acids, peptides, and proteins in vivo and in vitro. While soluble conjugates formed from small peptides can be extracted and analyzed directly by LC-MS, microcystins conjugated to proteins are analyzed after oxidative cleavage of their Adda side chains, but information on which microcystin analogues were present is lost. Observations during the development of thiol-derivatization-based LC-MS methods for microcystin analysis indicated that the reaction of thiols with microcystins was reversible. The kinetics of deconjugation was investigated with mercaptoethanol as a model thiol to identify suitable reaction conditions. A range of microcystins conjugated to mercaptoethanol, methanethiol, cysteine, and glutathione were then successfully deconjugated, demonstrating the feasibility of releasing conjugated forms of microcystins for chemical analysis. Reagents for removing the released thiols or for trapping the released microcystins increased the reaction rate. Optimization of methodologies based on this reaction should increase the method's utility for measuring free and conjugated microcystins. The results also indicate that thiol-conjugated microcystins slowly release free microcystins, even at neutral pH, with consequences for assessment of toxin exposure, metabolism, and trophic transfer. A range of other common natural and environmental toxins, such as deoxynivalenol and acrylamide, also contain α,ß-unsaturated carbonyl groups and can be expected to behave in a similar manner.


Asunto(s)
Microcistinas/química , Compuestos de Sulfhidrilo/química , Catálisis , Cromatografía Liquida , Espectrometría de Masas
10.
Harmful Algae ; 54: 21-43, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-28073477

RESUMEN

The traditional genus Aphanizomenon comprises a group of filamentous nitrogen-fixing cyanobacteria of which several memebers are able to develop blooms and to produce toxic metabolites (cyanotoxins), including hepatotoxins (microcystins), neurotoxins (anatoxins and saxitoxins) and cytotoxins (cylindrospermopsin). This genus, representing geographically widespread and extensively studied cyanobacteria, is in fact heterogeneous and composed of at least five phylogenetically distant groups (Aphanizomenon, Anabaena/Aphanizomenon like cluster A, Cuspidothrix, Sphaerospermopsis and Chrysosporum) whose taxonomy is still under revision. This review provides a thorough insight into the phylogeny, ecology, biogeography and toxicogenomics (cyr, sxt, and ana genes) of the five best documented "Aphanizomenon" species with special relevance for water risk assessment: Aphanizomenon flos-aquae, Aphanizomenon gracile, Cuspidothrix issatschenkoi, Sphaerospermopsis aphanizomenoides and Chrysosporum ovalisporum. Aph. flos-aquae, Aph. gracile and C. issatschenkoi have been reported from temperate areas only whereas S. aphanizomenoides shows the widest distribution from the tropics to temperate areas. Ch. ovalisporum is found in tropical, subtropical and Mediterranean areas. While all five species show moderate growth rates (0.1-0.4day-1) within a wide range of temperatures (15-30°C), Aph. gracile and A. flos-aquae can grow from around (or below) 10°C, whereas Ch. ovalisporum and S. aphanizomenoides are much better competitors at high temperatures over 30°C or even close to 35°C. A. gracile has been confirmed as the producer of saxitoxins and cylindrospermopsin, C. issatschenkoi of anatoxins and saxitoxins and Ch. ovalisporum of cylindrospermopsin. The suspected cylindrospermopsin or anatoxin-a production of A. flos-aquae or microcystin production of S. aphanizomenoides is still uncertain. This review includes a critical discussion on the the reliability of toxicity reports and on the invasive potential of "Aphanizomenon" species in a climate change scenario, together with derived knowledge gaps and research needs. As a whole, this work is intended to represent a key reference for scientists and water managers involved in the major challenges of identifying, preventing and mitigating toxic Aphanizomenon blooms.


Asunto(s)
Aphanizomenon/clasificación , Aphanizomenon/fisiología , Toxinas Bacterianas/metabolismo , Cianobacterias/clasificación , Cianobacterias/fisiología , Filogenia , Aphanizomenon/citología , Aphanizomenon/metabolismo , Cianobacterias/metabolismo , Ecología
11.
J Phycol ; 51(2): 367-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26986531

RESUMEN

Charophytes (Charales) are benthic algae with a complex morphology. They are vulnerable to ecosystem changes, such as eutrophication, and are red-listed in many countries. Accurate identification of Chara species is critical for understanding their diversity and for documenting changes in species distribution. Species delineation is, however, complicated, because of high phenotypic plasticity. We used barcodes of the ITS2, matK and rbcL regions to test if the distribution of barcode haplotypes among individuals is consistent with species boundaries as they are currently understood. The study included freshly collected and herbarium material of 91 specimens from 10 European countries, Canada and Argentina. Results showed that herbarium specimens are useful as a source of material for genetic analyses for aquatic plants like Chara. rbcL and matK had highest sequence recoverability, but rbcL had a somewhat lower discriminatory power than ITS2 and matK. The tree resulting from the concatenated data matrix grouped the samples into six main groups contrary to a traditional morphological approach that consisted of 14 different taxa. A large unresolved group consisted of C. intermedia, C. hispida, C. horrida, C. baltica, C. polyacantha, C. rudis, C. aculeolata, and C. corfuensis. A second unresolved group consisted of C. virgata and C. strigosa. The taxa within each of the unresolved groups shared identical barcode sequences on the 977 positions of the concatenated data matrix. The morphological differences of taxa within both unresolved groups include the number and length of spine cells, stipulodes, and bract cells. We suggest that these morphological traits have less taxonomic relevance than hitherto assumed.

12.
Environ Sci Technol ; 48(22): 13307-15, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25333659

RESUMEN

Microcystins are cyclic heptapeptides produced by a range of cyanobacteria. More than 150 microcystin analogues have been reported from cultures, algal blooms, or other contaminated samples. Relatively few analytical standards are available, making identification and quantitation of these toxins a challenge, even with LC-MS technology. We developed a two-step oxidative procedure that allows LC-MS identification of microcystins containing methionine and methionine sulfoxide, and reveals the oxidation state of the methionyl sulfur atom. The procedure was used in parallel with mercaptoethanol derivatization and LC-MS(2) analysis to demonstrate the presence of [Asp(3)]MC-MR (12) and MC-MR (17) in a culture of Dolichospermum flos-aquae, together with low levels of [Asp(3)]MC-M(O)R (5) and MC-M(O)R (7), as well as 20 other microcystins. Fresh culture contained only traces of sulfoxides 5 and 7, but these increased during storage or sample extraction and preparation. This suggests that microcystins containing methionine sulfoxide are primarily postextraction oxidation artifacts, rather than being produced by biosynthesis in cyanobacteria. A simple, rapid extraction under inert gas followed promptly by LC-MS analysis minimized oxidation artifacts for D. flos-aquae.


Asunto(s)
Cromatografía Liquida/métodos , Cianobacterias/metabolismo , Espectrometría de Masas/métodos , Metionina/metabolismo , Microcistinas/metabolismo , Sulfuros/metabolismo , Metionina/análogos & derivados , Oxidación-Reducción , Sulfonas/metabolismo
13.
Environ Sci Technol ; 48(14): 8035-43, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24941031

RESUMEN

Microcystins (MCs) are a group of biotoxins (>150) produced by cyanobacteria, with a worldwide distribution. MCs are hepatotoxic, and acute exposure causes severe liver damage in humans and animals. Rapid and cheap methods of analysis are therefore required to protect people and livestock, especially in developing countries. To include as many MCs as possible in a single analysis, we developed a new competitive ELISA. Ovine polyclonal antibodies were raised using an immunogen made by conjugating a mixture of microcystins to cationised bovine serum albumin, and the plate-coating antigen was prepared by conjugating [Asp3]MC-RY to ovalbumin. This strategy was used also to minimize specificity for particular microcystin congeners. Cross-reactivity studies indicate that the ELISA has broad specificity to microcystins and also detects nodularin, providing a sensitive and rapid analytical method for screening large numbers of samples. The limit of quantitation for microcystins in drinking water is 0.04 µg/L, well below the WHO's maximum recommendation of 1 µg/L. The ELISA can be used for quantifying total microcystins in various matrices, including drinking water, cyanobacterial cultures, extracts, and algal blooms, and may be useful in detecting metabolites and conjugates of MCs.


Asunto(s)
Reacciones Cruzadas/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Haptenos/inmunología , Microcistinas/inmunología , Péptidos Cíclicos/inmunología , Animales , Anticuerpos/metabolismo , Cromatografía Liquida , Agua Potable/microbiología , Haptenos/química , Humanos , Sueros Inmunes/metabolismo , Espectrometría de Masas , Microcistinas/química , Microcystis/química , Estándares de Referencia , Abastecimiento de Agua
14.
Appl Environ Microbiol ; 80(4): 1359-70, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24334673

RESUMEN

Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 µg CYN mg(-1) [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/genética , Agua Dulce/microbiología , Toxinas Marinas/metabolismo , Filogeografía , Uracilo/análogos & derivados , Alcaloides , Toxinas Bacterianas , Cianobacterias/metabolismo , Toxinas de Cianobacterias , ADN Bacteriano/clasificación , ADN Bacteriano/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , España , Uracilo/metabolismo
15.
Toxicon ; 70: 21-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23567039

RESUMEN

Microcystins are cyclic heptapeptides from cyanobacteria which are responsible for poisonings of livestock and humans. Cyanobacteria also produce a range of peptides and other compounds that can result in complex chromatograms when samples are analysed by LC-MS. Thiol derivatization of the α,ß-unsaturated amide present in most microcystins was recently shown to simplify analysis of LC-MS chromatograms of a Microcystis culture, making it easier to identify peaks corresponding to microcystins in complex mixtures. This method was applied to analysis of extracts taken from a natural cyanobacteria bloom in Mwanza Gulf, Lake Victoria, Tanzania, in 2010, revealing the presence of numerous putative microcystin analogues in the sample. Results were verified using LC-MS², LC-MS/MS with precursor-ion scanning, and LC-HRMS, leading to identification of 8 major and 17 minor microcystins in the sample, including analogues of microcystin-RY, -RL and -RA. Microcystin-YR (2), -RR (3), and -RY (9) were isolated from bloom material from Lake Victoria, and the structure of 9 was confirmed by NMR spectroscopic analysis and NMR spectral comparison with 2 and 3. Confirmation of the structure of MC-RY (9) facilitated detailed analysis of its MS² spectrum, thereby supporting the structures of related analogues tentatively established on the basis of MS analyses.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Eutrofización , Lagos/química , Microcistinas/análisis , Compuestos de Sulfhidrilo/análisis , Cromatografía Liquida , Espectroscopía de Resonancia Magnética , Espectrometría de Masas en Tándem , Tanzanía , Microbiología del Agua
16.
Environ Sci Technol ; 47(9): 4080-7, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23531156

RESUMEN

Kinetic studies showed that [Asp(3), Dhb(7)]MC-RR reacted with mercaptoethanol hundreds of times more slowly than MC-RR and a range of other [Mdha(7)]-containing microcystin congeners. The difference in reaction rate was sufficiently large that derivatization of microcystin-containing samples with mercaptoethanol, followed by LC-MS analysis, clearly discriminated between microcystins containing the isobaric [Dhb(7)]- and [Mdha(7)]-groups. Application of this approach, using LC-MS with both-ion trap and triple-quadrupole mass spectrometers, to water samples and Planktothrix cultures from Lake Steinsfjorden, Norway, demonstrated the presence of [Asp(3), Dhb(7)]MC-RR (5), [Asp(3)]MC-RY (14), and [Asp(3)]MC-LY (16), as well as analogues tentatively identified as [Asp(3)]MC-RR (4), [Asp(3), DMAdda(5), Dhb(7)]MC-LR (6), [Asp(3), Dhb(7)]MC-HtyR (8), [Asp(3)]MC-HtyR (9), [Asp(3), Dhb(7)]MC-LR (10), [Asp(3)]MC-LR (11), [Asp(3), Dhb(7)]MC-RY (15), and [Asp(3), Dhb(7)]MC-LY (17), together with low levels of several other analogues. This is the first use of this thiol-based LC-MS approach to identify Dhb-containing microcystins, and allowed identification of LC-MS peaks in a mixture of [Mdha(7)]- and [Dhb(7)]-congeners of [Asp(3)]MC-RR (4, 5), -RY (14, 15), and -LY (16, 17) in the samples from L. Steinsfjorden. This is also the first report of MC-RY-congeners outside of Africa, or in Planktothrix spp. Analysis of European crayfish (Astacus astacus) taken from L. Steinsfjorden revealed the presence of only trace levels of microcystins in the edible parts.


Asunto(s)
Astacoidea/química , Cromatografía Liquida/métodos , Cianobacterias/química , Espectrometría de Masas/métodos , Microcistinas/química , Compuestos de Sulfhidrilo/química , Animales , Cinética , Lagos , Microcistinas/clasificación , Noruega
17.
Environ Sci Technol ; 46(16): 8937-44, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22834560

RESUMEN

Microcystins are a group of cyclic heptapeptides originating from cyanobacteria. Cyanobacteria also produce a range of peptides and other compounds that can result in complex chromatograms when samples are analyzed by LC-MS. Derivatization with appropriate thiols (e.g., mercaptoethanol) of the olefin in the α,ß-unsaturated amide present in most microcystins was shown to simplify analysis of LC-MS chromatograms of sample extracts, making it much easier to identify peaks corresponding to candidate microcystins. Furthermore, interpretation of MS(2) spectra was facilitated by addition of the mass associated with the thiol to the α,ß-unsaturated amide of microcystins. Cyanotoxins containing Mdha or Dha reacted readily with thiols, whereas Mser, Ser, Mdhb, and thiol-derivatives of Mdha or Dha did not react under the conditions used. This approach therefore provides a convenient LC-MS method to obtain evidence for the presence of Mdha or Dha and can likely be used to differentiate between the isobaric amino acids Mdha and Dhb in candidate cyanotoxin peaks. When O-(2-mercaptoethyl)-O'-methyl-hexa(ethylene glycol) (MEMHEG) (M(w)t. 356) was used as the thiol, the resulting derivatives eluted in an LC-MS mass window that was largely free of interferences. This approach simplifies detection of candidate microcystin analogues even in the presence of complex mixtures of coeluting components. The method was used for qualitative analysis of a Microcystis aeruginosa culture from Lake Naivasha, Kenya, and the results were verified using precursor-ion scanning and high-resolution mass spectrometry.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Microcistinas/aislamiento & purificación , Compuestos de Sulfhidrilo/química , Espectroscopía de Resonancia Magnética , Microcistinas/química
18.
FEMS Microbiol Ecol ; 82(1): 23-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22537189

RESUMEN

Akinetes are the dormant cells of Nostocales (cyanobacteria) that enable the organisms to survive harsh environmental conditions while resting in bottom sediments. The germination of akinetes assists the dispersal and persistence of the species. The assessment of the akinete pool in lake sediments is essential to predict the bloom formation of the Nostocales population. We present here the implementation of an improved catalysed reporter deposition (CARD)-fluorescence in situ hybridization (FISH) protocol to assist the identification and quantification of akinetes in sediment samples. Several 16S rRNA gene oligonucleotide probes were evaluated for labelling akinetes of various species of Anabaena, Aphanizomenon and Cylindrospermopsis. Akinetes of all the taxa studied were successfully labelled and could be easily detected by their bright fluorescence signal. The probes' specificity was tested with 32 strains of different taxa. All six Cylindrospermopsis raciborskii strains were labelled with a specific probe for its 16S rRNA gene. A more general probe labelled 73% of the Anabaena and Aphanizomenon strains. The counting data of field samples obtained with CARD-FISH and the regular light microscopy approach did not differ significantly, confirming the suitability of both methods. The CARD-FISH approach was found to be less time-consuming because of better visibility of akinetes.


Asunto(s)
Cianobacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Hibridación Fluorescente in Situ/métodos , Anabaena/genética , Anabaena/aislamiento & purificación , Aphanizomenon/genética , Aphanizomenon/aislamiento & purificación , Cianobacterias/genética , Cylindrospermopsis/genética , Cylindrospermopsis/aislamiento & purificación , Lagos/microbiología , Sondas de Oligonucleótidos , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Especificidad de la Especie , Microbiología del Agua
19.
Toxicon ; 56(6): 964-71, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20615427

RESUMEN

The neurotoxin anatoxin-a (ATX), has been detected in several northeast German lakes during the last two decades, but no ATX producers have been identified in German water bodies so far. In 2007 and 2008, we analyzed phytoplankton composition and ATX concentration in Lake Stolpsee (NE Germany) in order to identify ATX producers. Sixty-one Aphanizomenon spp. strains were isolated, morphologically and phylogenetically characterized, and tested for ATX production potential by liquid chromatography-tandem mass spectrometry (LC-MS/MS). New primers were specifically designed to identify a fragment of a polyketide synthase gene putatively involved in ATX synthesis and tested on all 61 Aphanizomenon spp. strains from L. Stolpsee and 92 non-ATX-producing Aphanizomenon spp., Anabaena spp. and Anabaenopsis spp. strains from German lakes Langersee, Melangsee and Scharmützelsee. As demonstrated by LC-MS/MS, ATX concentrations in L. Stolpsee were undetectable in 2007 and ranged from 0.01 to 0.12 microg l(-1) in 2008. Fifty-nine of the 61 strains isolated were classified as Aphanizomenon gracile and two as Aphanizomenon issatschenkoi. One A. issatschenkoi strain was found to produce ATX at concentrations of 2354+/-273 microg g(-1) fresh weight, whereas the other A. issatschenkoi strain and A. gracile strains tested negative. The polyketide synthase gene putatively involved in ATX biosynthesis was found in the ATX-producing A. issatschenkoi strain from L. Stolpsee but not in the non-ATX-producing Aphanizomenon spp., Anabaena spp. and Anabaenopsis spp. strains from lakes Stolpsee, Langersee, Melangsee, and Scharmützelsee. This study is the first confirming A. issatschenkoi as an ATX producer in German water bodies.


Asunto(s)
Anabaena/fisiología , Aphanizomenon/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Tropanos/metabolismo , Aphanizomenon/citología , Aphanizomenon/genética , Proteínas Bacterianas/análisis , Cromatografía Líquida de Alta Presión , Toxinas de Cianobacterias , ADN Bacteriano/análisis , Agua Dulce/química , Agua Dulce/microbiología , Alemania , Filogenia , Fitoplancton/química , Espectrometría de Masas en Tándem , Tropanos/análisis , Microbiología del Agua
20.
Appl Environ Microbiol ; 76(4): 1173-80, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20048055

RESUMEN

Neurotoxic paralytic shellfish poisoning (PSP) toxins, anatoxin-a (ATX), and hepatotoxic cylindrospermopsin (CYN) have been detected in several lakes in northeast Germany during the last 2 decades. They are produced worldwide by members of the nostocalean genera Anabaena, Cylindrospermopsis, and Aphanizomenon. Although no additional sources of PSP toxins and ATX have been identified in German water bodies to date, the observed CYN concentrations cannot be produced solely by Aphanizomenon flos-aquae, the only known CYN producer in Germany. Therefore, we attempted to identify PSP toxin, ATX, and CYN producers by isolating and characterizing 92 Anabaena, Aphanizomenon, and Anabaenopsis strains from five lakes in northeast Germany. In a polyphasic approach, all strains were morphologically and phylogenetically classified and then tested for PSP toxins, ATX, and CYN by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) and screened for the presence of PSP toxin- and CYN-encoding gene fragments. As demonstrated by ELISA and LC-MS, 14 Aphanizomenon gracile strains from Lakes Melang and Scharmützel produced four PSP toxin variants (gonyautoxin 5 [GTX5], decarbamoylsaxitoxin [dcSTX], saxitoxin [STX], and neosaxitoxin [NEO]). GTX5 was the most prevalent PSP toxin variant among the seven strains from Lake Scharmützel, and NEO was the most prevalent among the seven strains from Lake Melang. The sxtA gene, which is part of the saxitoxin gene cluster, was found in the 14 PSP toxin-producing A. gracile strains and in 11 non-PSP toxin-producing Aphanizomenon issatschenkoi, A. flos-aquae, Anabaena planktonica, and Anabaenopsis elenkinii strains. ATX and CYN were not detected in any of the isolated strains. This study is the first confirming the role of A. gracile as a PSP toxin producer in German water bodies.


Asunto(s)
Aphanizomenon/metabolismo , Aphanizomenon/patogenicidad , Agua Dulce/microbiología , Toxinas Marinas/biosíntesis , Intoxicación por Mariscos/etiología , Alcaloides , Animales , Aphanizomenon/genética , Aphanizomenon/aislamiento & purificación , Toxinas Bacterianas , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Cianobacterias/clasificación , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Cartilla de ADN/genética , ADN Bacteriano/genética , Ensayo de Inmunoadsorción Enzimática , Genes Bacterianos , Alemania , Toxinas Marinas/análisis , Toxinas Marinas/genética , Datos de Secuencia Molecular , Filogenia , Saxitoxina/biosíntesis , Saxitoxina/genética , Espectrometría de Masas en Tándem , Tropanos/metabolismo , Uracilo/análogos & derivados , Uracilo/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...