Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Immunol ; 264: 110241, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735508

RESUMEN

Primary Sjögren disease (pSD) is an autoimmune disease characterized by lymphoid infiltration of exocrine glands leading to dryness of the mucosal surfaces and by the production of autoantibodies. The pathophysiology of pSD remains elusive and no treatment with demonstrated efficacy is available yet. To better understand the biology underlying pSD heterogeneity, we aimed at identifying Consensus gene Modules (CMs) that summarize the high-dimensional transcriptomic data of whole blood samples in pSD patients. We performed unsupervised gene classification on four data sets and identified thirteen CMs. We annotated and interpreted each of these CMs as corresponding to cell type abundances or biological functions by using gene set enrichment analyses and transcriptomic profiles of sorted blood cell subsets. Correlation with independently measured cell type abundances by flow cytometry confirmed these annotations. We used these CMs to reconcile previously proposed patient stratifications of pSD. Importantly, we showed that the expression of modules representing lymphocytes and erythrocytes before treatment initiation is associated with response to hydroxychloroquine and leflunomide combination therapy in a clinical trial. These consensus modules will help the identification and translation of blood-based predictive biomarkers for the treatment of pSD.


Asunto(s)
Biomarcadores , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/genética , Síndrome de Sjögren/sangre , Biomarcadores/sangre , Transcriptoma , Perfilación de la Expresión Génica/métodos , Hidroxicloroquina/uso terapéutico , Femenino , Redes Reguladoras de Genes , Linfocitos/metabolismo
3.
PLoS Pathog ; 18(1): e1010200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025968

RESUMEN

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.


Asunto(s)
Quimiocina CCL17/inmunología , Quimiocina CCL22/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Neoplasias/inmunología , Neoplasias/virología , Linfocitos T Reguladores/inmunología , Animales , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Xenoinjertos , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/virología , Humanos , Ratones , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/virología
4.
Sci Rep ; 11(1): 5227, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664349

RESUMEN

Mechanisms of tumor immune escape are quite diverse and require specific approaches for their exploration in syngeneic tumor models. In several human malignancies, galectin-9 (gal-9) is suspected to contribute to the immune escape. However, in contrast with what has been done for the infiltrating cells, the contribution of gal-9 produced by malignant cells has never been demonstrated in an animal model. Therefore, we derived isogenic clones-either positive or negative for gal-9-from the MB49 murine bladder carcinoma cell line. A progressive and consistent reduction of tumor growth was observed when gal-9-KO cells were subjected to serial transplantations into syngeneic mice. In contrast, tumor growth was unaffected during parallel serial transplantations into nude mice, thus linking tumor inhibition to the enhancement of the immune response against gal-9-KO tumors. This stronger immune response was at least in part explained by changing patterns of response to interferon-γ. One consistent change was a more abundant production of CXCL10, a major inflammatory factor whose production is often induced by interferon-γ. Overall, these observations demonstrate for the first time that serial transplantation into syngeneic mice can be a valuable experimental approach for the exploration of novel mechanisms of tumor immune escape.


Asunto(s)
Quimiocina CXCL10/genética , Galectinas/genética , Interferón gamma/genética , Escape del Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Interferón gamma/inmunología , Ratones , Ratones Desnudos , Trasplante Isogénico , Escape del Tumor/inmunología , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología
5.
Cancer Immunol Immunother ; 70(2): 323-336, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32737537

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a highly malignant epithelial cancer linked to Epstein-Barr virus (EBV) infection. Tumors are characterized by a lymphomononuclear infiltrate and the number of natural killer (NK) cells in tumors appears to be of prognostic significance. Standard treatment for NPC in adolescents and young adults consists of induction chemotherapy followed by radiochemotherapy. Though survival rates are above 80%, the majority of patients suffer from long-term side-effects, mainly related to radiotherapy. The addition of immunotherapy to induction chemotherapy could improve tumor response. METHODS: We have investigated the killing of NPC cells by NK cells in the context of chemotherapy, using a panel of three nasopharyngeal carcinoma cell lines and a patient-derived xenograft. Cytotoxicity was measured using the calcein-release assay, while the contribution of different checkpoints and signaling pathways to killing was studied by siRNA-mediated gene silencing and chemical inhibitors. RESULTS: Chemotherapeutics cisplatin, 5-fluorouracil and gemcitabine sensitized NPC cells to killing by NK cells. Chemotherapeutics led to upregulation of PD-1 in NK cells and PD-L1 in NPC cells via NF-κB. Inhibition of the PD-L1/PD-1 checkpoint by an anti-PD-1 antibody or siRNA increased NK-cell cytotoxicity towards NPC cells. CONCLUSION: The addition of an anti-PD-1 antibody to chemotherapy in patients with NPC could increase the efficacy of induction chemotherapy. If confirmed in a clinical trial, more efficient induction therapy could allow the dose of radiotherapy to be reduced and thereby diminish severe late effects of such therapy.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Carcinoma Nasofaríngeo/genética , Receptor de Muerte Celular Programada 1/uso terapéutico , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Receptor de Muerte Celular Programada 1/metabolismo , Transfección , Regulación hacia Arriba
6.
Oncogenesis ; 9(7): 65, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632113

RESUMEN

Galectin-9 (Gal-9) is known to enhance the expansion of myeloid-derived suppressor cells (MDSCs) in murine models. Its contribution to the expansion of MDSCs in human malignancies remain to be investigated. We here report that Gal-9 expression in nasopharyngeal carcinoma (NPC) cells enhances the generation of MDSCs (CD33+CD11b+HLA-DR-) from CD33+ bystander cells. The underlying mechanisms involve both the intracellular and secreted Gal-9. Inside carcinoma cells, Gal-9 up-regulates the expression of a variety of pro-inflammatory cytokines which are critical for MDSC differentiation, including IL-1ß and IL-6. This effect is mediated by accelerated STING protein degradation resulting from direct interaction of the Gal-9 carbohydrate recognition domain 1 with the STING C-terminus and subsequent enhancement of the E3 ubiquitin ligase TRIM29-mediated K48-linked ubiquitination of STING. Moreover, we showed that extracellular Gal-9 secreted by carcinoma cells can enter the myeloid cells and trigger the same signaling cascade. Consistently, high concentrations of tumor and plasma Gal-9 are associated with shortened survival of NPC patients. Our findings unearth that Gal-9 induces myeloid lineage-mediated immunosuppression in tumor microenvironments by suppressing STING signaling.

7.
Expert Opin Ther Targets ; 24(6): 545-558, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249657

RESUMEN

Introduction: Nasopharyngeal carcinoma (NPC) is a major public health problem in several countries, especially those in Southeast Asia and North Africa. In its typical poorly differentiated form, the Epstein-Barr virus (EBV) genome is present in the nuclei of all malignant cells with restricted expression of a few viral genes. The malignant phenotype of NPC cells results from the influence of these viral products in combination with cellular genetic, epigenetic and functional alterations. With regard to host/tumor interactions, NPC is a remarkable example of immune escape in the context of a hot tumor.Areas covered: This article has an emphasis on emerging therapeutic targets that are considered upstream or at an early stage of clinical application. It examines targets related to cellular oncogenic alterations, latent EBV infection and tumor interactions with the immune system.Expert opinion: There is a remarkable emergence of new agents that target EBV products. The clinical application of these agents would benefit from a systematic and comprehensive molecular classification of NPCs and from easy access to pre-clinical models in public repositories. There is a strong rationale for more investigations on the potential of immune modulators, especially those related to NK cells.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Animales , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Terapia Molecular Dirigida , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virología , Oncogenes/genética
8.
Cancer Immunol Immunother ; 68(8): 1317-1329, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31312900

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an EBV-associated neoplasm occurring endemically in Southeast Asia and sporadically all over the world. In children and adolescents, high cure rates have been obtained using chemotherapy, radiochemotherapy and maintenance therapy with interferon beta (IFNß). The mechanism by which IFNß contributes to a low systemic relapse rate has not yet been fully revealed. PATIENTS AND METHODS: NK cells and serum samples from two patients with NPC were analyzed before and at different time points during IFNß therapy, for assessment of TRAIL expression and NK cell cytotoxicity. Cytotoxicity was measured using the calcein release assay and the contribution of different death effector pathways was analyzed using specific inhibitors. RESULTS: Treatment with IFNß induced TRAIL expression on patients' NK cells and increased their cytotoxicity against NPC targets in vitro. NK cell-mediated cytotoxicity was predominately mediated via TRAIL. IFNß also induced the production of soluble TRAIL (sTRAIL) by NK cells and its release upon contact with NPC cells. IFNß treatment increased serum levels of sTRAIL in patients. Moreover, sTRAIL concentrated from patients' serum samples induced apoptosis ex vivo in NPC cells from a patient-derived xenograft. CONCLUSION: Increased cytotoxicity of NK cells against NPC cells and increased serum levels of biologically active TRAIL in patients treated with IFNß could be a means to eliminate micrometastatic disease and explain the low systemic relapse rate in this patient group.


Asunto(s)
Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/fisiología , Inmunoterapia/métodos , Interferón beta/uso terapéutico , Células Asesinas Naturales/inmunología , Carcinoma Nasofaríngeo/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Adolescente , Animales , Apoptosis , Línea Celular Tumoral , Niño , Citotoxicidad Inmunológica , Femenino , Humanos , Ratones , Ratones Desnudos , Carcinoma Nasofaríngeo/inmunología , Recurrencia Local de Neoplasia , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Transl Oncol ; 12(9): 1237-1256, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31295651

RESUMEN

Nasopharyngeal carcinoma (NPC) is a highly malignant epithelial cancer linked to EBV infection. Addition of interferon-ß (IFNß) to chemo- and radiochemotherapy has led to survival rates >90% in children and adolescents. As NPC cells are sensitive to apoptosis via tumor necrosis factor-related apoptosis inducing ligand (TRAIL), we explored the role of TRAIL and IFNß in the killing of NPC cells by natural killer (NK) cells. NPC cells, including cells of a patient-derived xenograft were exposed to NK cells in the presence or absence of IFNß. NK cells killed NPC- but not nasoepithelial cells and killing was predominately mediated via TRAIL. Incubation of NK cells with IFNß increased cytotoxicity against NPC cells. Concomitant incubation of NK- and NPC cells with IFNß before coculture reduced cytotoxicity and could be overcome by blocking the PD-1/PD-L1 axis leading to the release of intracellular TRAIL from NK cells. In conclusion, combination of IFNß and anti-PD-1, augmenting cytotoxicity of NK cells against NPC cells, could be a strategy to improve NPC-directed therapy and warrants further evaluation in vivo.

10.
PLoS One ; 13(9): e0202512, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30204750

RESUMEN

Extra-cellular galectin-9 (gal-9) is an immuno-modulatory protein with predominant immunosuppressive effects. Inappropriate production of gal-9 has been reported in several human malignancies and viral diseases like nasopharyngeal, pancreatic and renal carcinomas, metastatic melanomas and chronic active viral hepatitis. Therefore therapeutic antibodies neutralizing extra-cellular gal-9 are expected to contribute to immune restoration in these pathological conditions. Two novel monoclonal antibodies targeting gal-9 -Gal-Nab 1 and 2-have been produced and characterized in this study. We report a protective effect of Gal-Nab1 and Gal-Nab2 on the apoptotic cell death induced by gal-9 in primary T cells. In addition, they inhibit late phenotypic changes observed in peripheral T cells that survive gal-9-induced apoptosis. Gal-Nab1 and Gal-Nab2 bind nearly identical, overlapping linear epitopes contained in the 213-224 amino-acid segments of gal-9. Nevertheless, they have some distinct functional characteristics suggesting that their three-dimensional epitopes are distinct. These differences are best demonstrated when gal-9 is applied on Jurkat cells where Gal-Nab1 is less efficient than Gal-Nab2 in the prevention of apoptotic cell death. In addition, Gal-Nab1 stimulates non-lethal phosphatidylserine translocation at the plasma membrane and calcium mobilization triggered by gal-9 in these cells. Both Gal-Nab1 and 2 cross-react with murine gal-9. They bind its natural as well as its recombinant form. This cross-species recognition will be an advantage for their assessment in pre-clinical tumor models.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Epítopos/inmunología , Galectinas/química , Linfocitos T/citología , Animales , Apoptosis/efectos de los fármacos , Transporte Biológico , Calcio/metabolismo , Galectinas/efectos adversos , Galectinas/inmunología , Humanos , Inmunización , Células Jurkat , Ratones , Fosfatidilserinas/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA