Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Futur ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055159

RESUMEN

A 2-year field experiment was performed to test lithium chloride, LiCl, application in a normal beekeeping management system. The effect of LiCl on bee larval mortality, beehive weight (honey production) and Varroa mite mortality were tested. Spectrometric quantification of Li on honey and the larval body were made to test the effectiveness of the presence of LiCl. Li was detected in bee larval bodies and in honey over 2 years, from 2018 to 2019. According to the results, no effect of LiCl on mite mortality or bee larval mortality was detected in the first year of application. By assessing the weight variation of beehives, only one LiCl-treated hive showed a significantly higher weight, whereas no other differences were detected between treatments and control. The same trend seen in 2018 was repeated in 2019, while a total bee larval mortality was observed after the first LiCl application, and still no differences in Varroa mite mortality were observed. According to these results, it was concluded that LiCl has no effect on Varroa mite mortality during normal beekeeping practice; furthermore, the recommended amount of treatment (25 mM) had a lethal effect (i.e., total mortality) on larvae following repeated applications.

2.
Sci Rep ; 13(1): 6088, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055463

RESUMEN

An important challenge in the study of ecosystem function is resolving how plant antiherbivore chemical defence expression may influence plant-associated microbes, and nutrient release. We report on a factorial experiment that explores a mechanism underlying this interplay using individuals of the perennial plant Tansy that vary genotypically in the chemical content of their antiherbivore defenses (chemotypes). We assessed to what extent soil and its associated microbial community versus chemotype-specific litter determined the composition of the soil microbial community. Microbial diversity profiles revealed sporadic effects of chemotype litter and soil combinations. Soil source and litter type both explained the microbial communities decomposing the litter with soil source having a more important effect. Some microbial taxa are related to particular chemotypes, and thus intra-specific chemical variation of a single plant chemotype can shape the litter microbial community. But we found that ultimately the effect of fresh litter inputs from a chemotype appeared to act secondary as a filter on the composition of the microbial community, with the primary factor being the existing microbial community in the soil.


Asunto(s)
Ecosistema , Microbiota , Humanos , Suelo/química , Microbiología del Suelo , Plantas/microbiología , Bacterias , Hojas de la Planta/metabolismo
3.
Insects ; 13(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36292833

RESUMEN

The spruce bark beetle, Ips typographus (L.), attack progression (adult and larval galleries) and parental and offspring mortality rate were assessed in managed forests of the Poiana Rusca and Bihor Mountains, along with Western Romanian Carpathians using fungal (Beauveria bassiana) treatments. The results show that the effect of B. bassiana on adult (maternal) gallery length was similar to the untreated variant and was less effective than the synthetic insecticide lambda-cyhalothrin applied at a dose of 50 g/L. Additionally, its effect on the mean larval gallery number per maternal gallery was low. B. bassiana did not have a significant influence on the attack progression. Significant correlations between log diameter and I. typographus attack progression were detected; such differences were higher than the effect of any treatment. Altogether, abiotic (low humidity, high temperature) and biotic factors (log diameter) influenced the bark beetles' attack progression and reduced the entomopathogenic fungal effects. Considering the efficacy of the B. bassiana treatment on logs infested with I. typographus, the results showed that parents and offspring were infected, but even if the fungal treatment was applied in high concentrations, the mortality rate remained relatively low. Further research is necessary to test if different B. bassiana strains and their commercially recommended concentrations might be more effective under dry and warm climate conditions, respectively.

4.
Microorganisms ; 10(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35630383

RESUMEN

In this study, different maize fields cultivated under different management systems were sampled to test corn leaf aphid, Rhopalosiphum maidis, populations in terms of total and endosymbiotic bacterial diversity. Corn leaf aphid natural populations were collected from traditionally managed maize fields grown under high agricultural and natural landscape diversity as well as conventionally treated high-input agricultural fields grown in monoculture and with fertilizers use, hence with low natural landscape diversity. Total bacterial community assessment by DNA sequencing was performed using the Illumina MiSeq platform. In total, 365 bacterial genera were identified and 6 endosymbiont taxa. A high abundance of the primary endosymbiont Buchnera and secondary symbionts Serratia and Wolbachia were detected in all maize crops. Their frequency was found to be correlated with the maize management system used, probably with fertilizer input. Three other facultative endosymbionts ("Candidatus Hamiltonella", an uncultured Rickettsiales genus, and Spiroplasma) were also recorded at different frequencies under the two management regimes. Principal components analyses revealed that the relative contribution of the obligate and dominant symbiont Buchnera to the aphid endosymbiotic bacterial community was 72%, whereas for the managed system this was only 16.3%. When facultative symbionts alone were considered, the effect of management system revealed a DNA diversity of 23.3%.

5.
Ecol Evol ; 11(17): 11903-11914, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34522349

RESUMEN

In this study, our aim was to assess several traits of cavity-nesting Hymenopteran taxa in a low-intensity agricultural landscape in Transylvania. The study took place between May and August 2018 at eight study sites in the hilly mountainous central part of Romania, where the majority of the landscape is used for extensive farming or forestry. During the processing of the trap nest material, we recorded several traits regarding the nests of different cavity-nesting Hymenopteran taxa and the spider prey found inside the nests of the spider-hunting representatives of these taxa. We also evaluated the relationship between the edge density and proportion of low-intensity agricultural areas surrounding the study sites and some of these traits. The majority of nests were built by the solitary wasp genus Trypoxylon, followed by the solitary wasp taxa Dipogon and Eumeninae. Solitary bees were much less common, with Hylaeus being the most abundant genus. In the nests of Trypoxylon, we mostly found spider prey from the family of Araneidae, followed by specimens from the families of Linyphiidae and Theridiidae. In the nests of Dipogon, we predominantly encountered spider prey from the family of Thomisidae. We found significant effects of low-intensity agricultural areas for the genera of Auplopus, Megachile, Osmia, and the Thomisid prey of Dipogon. We also found that the spider prey of Trypoxylon was significantly more diverse at study sites with higher proportions of low-intensity agricultural areas. Our results indicate that solitary bees seem to be more abundant in areas, where the influence of human activities is stronger, while solitary wasps seem to rather avoid these areas. Therefore, we suggest that future studies not only should put more effort into sampling in low-intensity agricultural landscapes but also focus more on solitary wasp taxa, when sampling such an area.

6.
Front Plant Sci ; 11: 684, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670307

RESUMEN

In the present study, we conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input field (HIF) vs. low-input field (LIF) conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were annual fleabane, Erigeron annua (L.), Canadian horseweed, Erigeron canadensis (L.) and Canadian goldenrod, Solidago canadensis (L.). These species were predominantly hosts of the aphids Brachycaudus helichrysi and Aulacorthum solani under both management systems. The 13% higher coverage of E. annua under LIF conditions resulted in a 30% higher B. helichrysi abundance and ∼85% higher A. solani abundance compared with HIF conditions. To reveal the incidence of virus infection in crop plants and invasive weeds, high-throughput sequencing of small RNAs was performed. Bioinformatics analysis combined with independent validation methods revealed the presence of six viruses, but with strikingly different patterns under LIF and HIF conditions. Their presence without symptoms in invasive weeds and crop plants supports the necessity of employing new approaches to those currently employed in invasive weed management. These findings also suggest that invasive weeds could serve as hosts for local aphid species and reservoirs for plant pathogenic viruses, both under low and high input management systems. In this light, as here demonstrated, viruses transmitted by local aphid species were found to differ between the management systems; hence, the importance of B. helichrysi and A. solani as virus vectors in particular clearly needs to be re-evaluated. Altogether, we accept that the present study is a pilot one and individual virus vectoring of aphids still needs to be directly tested. Even so, it represents one of the first contributions to this particular area, and thereby paves the way for further similar applied research in the future.

7.
J Fungi (Basel) ; 6(3)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707976

RESUMEN

The effect of fungal entomopathogen M. anisopliae strain NCAIM 362 against M. melolontha larvae in sweet potato was tested under open field conditions when crop management included compost supply and soil cover (agro-foil or agro-textile). Additionally, the effect of M. anisopliae same strain against M. melolontha was compared with the effect of α-cypermethrin under greenhouse conditions. Soil microbial community using Illumina sequencing and soil biological activity were tested as possible parameter influencing M. anisopliae effect. According to the results, compost supply and textile cover may enhance the effectiveness of M. anisopliae under open field conditions, while no effect of fungal treatment was detected under greenhouse conditions. Even if soil parameters (chemical composition, bacterial, and biological activity) were identical, the effect of α-cypermethrin against M. melolontha larvae was significant: lower ratio of larval survival and less damaged tubers were detected after the chemical treatment. Our results suggest that M. anisopliae strain NCAIM 362 is not effective to control M. melolontha larvae, further pieces of research are needed to test other species of the Metarhizium genus to find an effective agent for sustainable pest control in sweet potato.

8.
Microorganisms ; 8(6)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549234

RESUMEN

Artemisinin extracted from Artemisia annua has been used efficiently in malaria treatment since 2005. In this study, the variations in plant parameters (plant biomass, glandular trichome density, essential oil total chemical content, artemisinin production, and polyphenol oxidase (PPO) activity) were tested under different soil types (Luvisol, Gleysol, Anthrosol and sterile peat) and cultivation conditions (potted plants in semi-open field, and open field experiments) for plants inoculated with arbuscular mycorrhizal fungus (AMF) Rizophagus irregularis. Under semi-open field conditions, the AMF colonization of A. annua plant roots varied, and presented the highest percentage in Luvisol and sterile peat. The increase in the root colonization rate positively influenced some plant parameters (biomass, glandular trichome density, artemisinin concentration, essential oil quantity and composition), but no effects on PPO enzyme activity were detected. AMF fungus R. irregularis significantly increased the artemisinin content and essential oil yield of plants cultivated in Luvisol, Gleysol, Anthrosol and in peat. These soil types can offer appropriate conditions for A. annua cultivation and artemisinin production even on a smaller scale. Under open field conditions, low (about 5%) AMF colonization was observed. No differences in artemisin contents were detected, but essential oil yield significantly increased compared to control plants. AMF treatment increased beta-farnesene and germacrene D concentrations in Artemisia plants in the open field experiment.

9.
Plants (Basel) ; 9(2)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046312

RESUMEN

The effect of populin extract from black poplar (Populus nigra) on seven different late blight strains was tested under laboratory and field conditions. The growth rate of hyphae was found to be significantly lower in vitro after 3 and 4 v/v% populin applications. Stain M16 was resistant to populin treatment under lab conditions, however. Both 5% and 10% concentration populin reduced the M16 strain's severity on potato leaves under field conditions and proved to be even more effective than conventionally used fungicides Infinito 687 Sc and Valis M. Higher infection intensity at the 1% level was observed after 24 h using Valis M, and the same trend toward 10% infection remained after 48 and 72 h as well. Low, almost-no-infection intensity was detected after populin 5% and 10% treatment under an open field condition. Altogether, it can be concluded that populin extract can be a low-cost option for growers and an environmentally friendly approach in late blight control.

10.
Insects ; 10(11)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684065

RESUMEN

Fungal entomopathogens are gaining increasing attention as alternatives to chemical control of arthropod pests, and the literature on their use under different conditions and against different species keeps expanding. Our review compiles information regarding the entomopathogenic fungal species Metarhizium flavoviride (Gams and Rozsypal 1956) (Hypocreales: Clavicipitaceae) and gives account of the natural occurrences and target arthropods that can be controlled using M. flavoviride. Taxonomic problems around M. flavoviride species sensu lato are explained. Bioassays, laboratory and field studies examining the effect of fermentation, culture regimes and formulation are compiled along with studies on the effect of the fungus on target and non-target organisms and presenting the effect of management practices on the use of the fungus. Altogether, we provide information to help conducting basic studies, and by pointing out relatively uncharted territories, help to set new research areas.

11.
Insects ; 10(10)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554276

RESUMEN

In the present article we discuss why, in our view, the term 'generalism' to define the dietary breadth of a species is a misnomer and should be revised by entomologists/ecologists with the more exact title relating to the animal in question's level of phagy-mono-, oligo, or polyphagy. We discard generalism as a concept because of the indisputable fact that all living organisms fill a unique ecological niche, and that entry and exit from such niches are the acknowledged routes and mechanisms driving ecological divergence and ultimately speciation. The term specialist is probably still useful and we support its continuing usage simply because all species and lower levels of evolutionary diverge are indeed specialists to a large degree. Using aphids and parasitoid wasps as examples, we provide evidence from the literature that even some apparently highly polyphagous agricultural aphid pest species and their wasp parasitoids are probably not as polyphagous as formerly assumed. We suggest that the shifting of plant hosts by herbivorous insects like aphids, whilst having positive benefits in reducing competition, and reducing antagonists by moving the target organism into 'enemy free space', produces trade-offs in survival, involving relaxed selection in the case of the manicured agro-ecosystem.

12.
Front Plant Sci ; 9: 478, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706981

RESUMEN

The main objective of this study was to investigate Artemisia annua plant property variations in terms of plant biomass, glandular trichome numbers, artemisinin production and Guaiacol peroxidase (GPOX) activity when plants are in mutualism with AMF. According to the results, A. annua mutualism with AMF significantly increased the most important and pharmaceutically relevant factors of fresh and dry plant biomass. This increase, especially in the biomass of plant herba (leaves), was 30% higher during the vegetation period and remained high (29% higher than for control) when plants were harvested at the end of the vegetation period. Similar differences in dry biomass were also detected. Glandular trichomas numbers increased by 40%, and the artemisinin content by 17% under AMF colonization. No effects due to AMF on chlorophyll variations were detected, while GPOX enzyme concentrations increased significantly under AMF colonization. Altogether the Artemisia plant properties with high pharmaceutically importance (fresh and dry biomass of leaves and artemisinin, number of trichomes and the artemisinin content) were significantly improved by AMF, the application in Artemisia cultivation can be an effective and cheap method. The high GPOX activity under AMF colonization indicate an enhanced oxidative stress alleviation, therefore a higher resistance to water deficiency, mechanisms important under climate conditions with low water supply where Artemisia is usually cultivated.

13.
Sci Data ; 5: 180019, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29461517

RESUMEN

Arthropods from four genetically modified (GM) maize hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant+herbicide tolerant and coleopteran resistant and herbicide tolerant) and non-GM varieties were sampled during a two-year field assessment. A total number of 363 555 arthropod individuals were collected. This represents the most comprehensive arthropod dataset from GM maize, and together with weed data, is reasonable to determine functional groups of arthropods and interactions between species. Trophic groups identified from both phytophagous and predatory arthropods were previously considered non-target organisms on which possible detrimental effects of Bacillus thuringiensis (Bt) toxins may have been directly (phytophagous species) or indirectly (predators) detected. The high number of individuals and species and their dynamics through the maize growing season can predict that interactions are highly correlational, and can thus be considered a useful tool to assess potential deleterious effects of Bt toxins on non-target organisms, serving to develop biosafety risk hypotheses for invertebrates exposed to GM maize plants.


Asunto(s)
Artrópodos , Zea mays , Animales , Productos Agrícolas , Herbicidas , Plantas Modificadas Genéticamente/parasitología , Zea mays/genética , Zea mays/parasitología
14.
Ecol Evol ; 8(2): 1247-1259, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375795

RESUMEN

Mechanisms that allow for the coexistence of two competing species that share a trophic level can be broadly divided into those that prevent competitive exclusion of one species within a local area, and those that allow for coexistence only at a regional level. While the presence of aphid-tending ants can change the distribution of aphids among host plants, the role of mutualistic ants has not been fully explored to understand coexistence of multiple aphid species in a community. The tansy plant (Tanacetum vulgare) hosts three common and specialized aphid species, with only one being tended by ants. Often, these aphids species will not coexist on the same plant but will coexist across multiple plant hosts in a field. In this study, we aim to understand how interactions with mutualistic ants and predators affect the coexistence of multiple species of aphid herbivores on tansy. We show that the presence of ants drives community assembly at the level of individual plant, that is, the local community, by favoring one ant-tended species, Metopeurum fuscoviride, while preying on the untended Macrosiphoniella tanacetaria and, to a lesser extent, Uroleucon tanaceti. Competitive hierarchies without ants were very different from those with ants. At the regional level, multiple tansy plants provide a habitat across which all aphid species can coexist at the larger spatial scale, while being competitively excluded at the local scale. In this case, ant mutualist-dependent reversal of the competitive hierarchy can drive community dynamics in a plant-aphid system.

15.
Biol Rev Camb Philos Soc ; 93(1): 642-657, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28836372

RESUMEN

Debate still continues around the definition of generalism and specialism in nature. To some, generalism is equated solely with polyphagy, but this cannot be readily divorced from other essential biological factors, such as morphology, behaviour, genetics, biochemistry, chemistry and ecology, including chemical ecology. Viewed in this light, and accepting that when living organisms evolve to fill new ecological-evolutionary niches, this is the primal act of specialisation, then perhaps all living organisms are specialist in the broadest sense. To illustrate the levels of specialisation that may be found in a group of animals, we here provide an overview of those displayed by a subfamily of hemipteran insects, the Aphididae, which comprises some 1600 species/subspecies in Europe alone and whose members are specialised in a variety of lifestyle traits. These include life cycle, host adaptation, dispersal and migration, associations with bacterial symbionts (in turn related to host adaptation and resistance to hymenopterous wasp parasitoids), mutualisms with ants, and resistance to insecticides. As with polyphagy, these traits cannot easily be separated from one another, but rather, are interconnected, often highly so, which makes the Aphididae a fascinating animal group to study, providing an informative, perhaps unique, model to illustrate the complexities of defining generalism versus specialism.


Asunto(s)
Áfidos/genética , Áfidos/fisiología , Evolución Biológica , Conducta Alimentaria , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Ecosistema , Resistencia a los Insecticidas
16.
Pest Manag Sci ; 73(11): 2203-2208, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28470963

RESUMEN

The five-year value in the compound annual growth rate of the biopesticides sector is predicted to be 16% by 2017 and to produce a global market worth $US 10 billion. Despite this, several impediments occur within the EU that negatively affect biopesticide research and innovation. At present, there are fewer biopesticide-active substances registered in the EU compared with the United States, India, Brazil and China. The relatively low level of biopesticide research in the EU (6880 ISI papers) versus the United States (18 839), India (9501) and China (7875) relates to the greater complexity of EU-based biopesticide regulations compared with these other countries. In this light, it is worth noting that tensions may exist between regulators that emphasise the beneficial nature of biopesticides in environmentally friendly crop management and those that adopt a more technologically based approach dependent on a chemical-pesticide-driven model. Compared with the other aforementioned countries, far fewer biopesticide products are available in the EU market, mainly as a direct result of the severe regulatory factors present there. The extent to which this trend will continue depends largely on a range of interacting political and/or regulatory decisions that influence environmentally friendly agricultural industries. © 2017 Society of Chemical Industry.


Asunto(s)
Agricultura/legislación & jurisprudencia , Agentes de Control Biológico , Política Ambiental/legislación & jurisprudencia , Unión Europea , Investigación
17.
Ecol Evol ; 7(7): 2286-2293, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28405292

RESUMEN

Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non-GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups' number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non-GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non-GM food webs for herbivores were observed. Food webs parameterized based on 2-year in-field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non-target organisms.

18.
Oecologia ; 180(3): 797-807, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26581421

RESUMEN

It is becoming increasingly appreciated that the structure and functioning of ecological food webs are controlled by the nature and level of plant chemicals. It is hypothesized that intraspecific variation in plant chemical resistance, in which individuals of a host-plant population exhibit genetic differences in their chemical contents (called 'plant chemotypes'), may be an important determinant of variation in food web structure and functioning. We evaluated this hypothesis using field assessments and plant chemical assays in the tansy plant Tanacetum vulgare L. (Asteraceae). We examined food webs in which chemotypes of tansy plants are the resource for two specialized aphids, their predators and mutualistic ants. The density of the ant-tended aphid Metopeurum fuscoviride was significantly higher on particular chemotypes (borneol) than others. Clear chemotype preferences between predators were also detected. Aphid specialist seven-spotted ladybird beetles (Coccinella septempunctata) were more often found on camphor plants, while significantly higher numbers of the polyphagous nursery web spider (Pisaura mirabilis) were observed on borneol plants. The analysis of plant chemotype effects on the arthropod community clearly demonstrates a range of possible outcomes between plant-aphid-predator networks. The findings help to offer a deeper insight into how one important factor--plant chemical content--influences which species coexist within a food web on a particular host plant and the nature of their trophic linkages.


Asunto(s)
Cadena Alimentaria , Insectos , Fenotipo , Conducta Predatoria , Arañas , Simbiosis , Tanacetum/química , Animales , Hormigas , Áfidos , Canfanos , Escarabajos
19.
Sci Rep ; 4: 5315, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24937207

RESUMEN

There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.


Asunto(s)
Artrópodos/fisiología , Cadena Alimentaria , Plantas Modificadas Genéticamente/parasitología , Zea mays/parasitología , Algoritmos , Animales , Artrópodos/clasificación , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecosistema , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistencia a los Herbicidas/genética , Interacciones Huésped-Parásitos , Modelos Teóricos , Plantas Modificadas Genéticamente/genética , Especificidad de la Especie , Factores de Tiempo , Zea mays/clasificación , Zea mays/genética
20.
Bull Entomol Res ; 103(5): 578-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23601915

RESUMEN

The interplay between the host plant of an insect herbivore and an insect predator (here two-spot ladybird beetles; Adalia bipunctata (L).; Coleoptera: Coccinellidae), feeding upon such a herbivore was examined in the laboratory as factors possibly determining the differential abundance and success of green and red host races of pea aphid, Acyrthosiphon pisum Harris. The experiment comprised three treatments: two host plants (bean and clover), two treatment levels (control and predation) and three colour morph levels (green alone, red alone and green and red in mixture). Green morphs had higher fitness on the general host plant, bean Vicia faba, than on the derived host, clover (Trifolium pratense), in the absence of predation. Although green morph fitness was reduced by predation when infesting bean together with reds, there was no observable net fitness loss due to predation on clover in mixed colonies with red morphs. Red morphs exhibited fitness loss alone on both bean and clover, while clover plants seemingly prevented fitness loss in the presence of predation when red morphs were mixed with green ones. According to this scenario, when colour morphs existed as a mixed colony, the net fitness of either pea aphid morph was not influenced by predation on clover. Predators had significant effects only on red morphs on broad bean either when alone or were mixed together with green morphs. Thus, only red morphs experienced the benefits of switching from the general to the derived host red clover in the presence of predation. For green morphs, there was no apparent cost of switching host plants when they faced predation. Hence, the co-existence of green-red colour polymorphism of pea aphids on single host plants appears to be maintained by the morph gaining fitness on the derived host due to a host plant­ and predation­reduction effect. These findings have important implications for understanding the ecology and evolution of host switching by different colour-plant host adapted races of pea aphids


Asunto(s)
Áfidos/genética , Escarabajos , Herbivoria , Pigmentación/genética , Conducta Predatoria , Animales , Evolución Biológica , Color , Femenino , Especificidad del Huésped , Masculino , Polimorfismo Genético , Trifolium , Vicia faba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA