Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 102(12): 5133-5147, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29680900

RESUMEN

Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all. Here, we report detailed characterization of a type VI sulfide:quinone oxidoreductase (TrSqrF) from a purple sulfur bacterium, Thiocapsa roseopersicina. Phylogenetic analysis classified this enzyme in a special group composed of SqrFs of endosymbionts, while a weaker relationship could be observed with SqrF of Chlorobaculum tepidum which is the only type VI enzyme characterized so far. Directed mutagenesis experiments showed that TrSqrF contributed substantially to the sulfide:quinone oxidoreductase activity of the membranes. Expression of the sqrF gene could be induced by sulfide. Homologous recombinant TrSqrF protein was expressed and purified from the membranes of a SqrF-deleted T. roseopersicina strain. The purified protein contains redox-active covalently bound FAD cofactor. The recombinant TrSqrF enzyme catalyzes sulfur-dependent quinone reduction and prefers ubiquinone-type quinone compounds. Kinetic parameters of TrSqrF show that the affinity of the enzyme is similar to duroquinone and decylubiquinone, but the reaction has substantially lower activation energy with decylubiquinone, indicating that the quinone structure has an effect on the catalytic process. TrSqrF enzyme affinity for sulfide is low, therefore, in agreement with the gene expressional analyis, SqrF could play a role in energy-conserving sulfide oxidation at high sulfide concentrations. TrSqrF is a good model enzyme for the subgroup of type VI Sqrs of endosymbionts and its characterization might provide deeper insight into the molecular details of the ancient, anoxic, energy-gaining processes using sulfide as an electron donor.


Asunto(s)
Bacteroides/enzimología , Quinona Reductasas/metabolismo , Bacteroides/clasificación , Regulación Bacteriana de la Expresión Génica , Oxidación-Reducción , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfuros/metabolismo
2.
FEBS J ; 276(1): 164-74, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19019079

RESUMEN

Thiocapsa roseopersicina BBS contains at least three different active NiFe hydrogenases: two membrane-bound enzymes and one apparently localized in the cytoplasm. In addition to the small and large structural subunits, additional proteins are usually associated with the NiFe hydrogenases, connecting their activity to other redox processes in the cells. The operon of the membrane-associated hydrogenase, HynSL, has an unusual gene arrangement: between the genes coding for the large and small subunits, there are two open reading frames, namely isp1 and isp2. Isp1 is a b-type haem-containing transmembrane protein, whereas Isp2 displays marked sequence similarity to the heterodisulfide reductases. The other membrane-bound (Hup) NiFe hydrogenase contains the hupC gene, which codes for a cytochrome b-type protein that probably plays a role in electron transport. The operon of the NAD(+)-reducing Hox hydrogenase contains a hoxE gene. In addition to the hydrogenase and diaphorase parts of the complex, the fifth HoxE subunit may serve as a third redox gate of this enzyme. The physiological functions of these putative electron-mediating subunits were studied by disruption of their genes. The deletion of some accessory proteins dramatically reduced the in vivo activities of the hydrogenases, although they were fully active in vitro. The absence of HupC resulted in a decrease in HupSL activity in the membrane, but removal of the Isp1 and Isp2 proteins did not have any significant effect on the location of HynSL activity. Through the use of a tagged HoxE protein, the whole Hox hydrogenase pentamer could be purified as an intact complex.


Asunto(s)
Hidrogenasas/metabolismo , Thiocapsa roseopersicina/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/enzimología , Transporte de Electrón , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Intrones , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sistemas de Lectura Abierta , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Thiocapsa roseopersicina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...