Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 15(1): 16, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641439

RESUMEN

BACKGROUND: Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS: We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS: The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION: In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Humanos , Animales , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
2.
Adv Redox Res ; 7: None, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38798747

RESUMEN

Ionising radiation (IR) is a cause of lipid peroxidation, and epidemiological data have revealed a correlation between exposure to IR and the development of eye lens cataracts. Cataracts remain the leading cause of blindness around the world. The plasma membranes of lens fibre cells are one of the most cholesterolrich membranes in the human body, forming lipid rafts and contributing to the biophysical properties of lens fibre plasma membrane. Liquid chromatography followed by mass spectrometry was used to analyse bovine eye lens lipid membrane fractions after exposure to 5 and 50 Gy and eye lenses taken from wholebody 2 Gy-irradiated mice. Although cholesterol levels do not change significantly, IR dose-dependant formation of the oxysterols 7ß-hydroxycholesterol, 7-ketocholesterol and 5, 6-epoxycholesterol in bovine lens nucleus membrane extracts was observed. Whole-body X-ray exposure (2 Gy) of 12-week old mice resulted in an increase in 7ß-hydroxycholesterol and 7-ketocholesterol in their eye lenses. Their increase regressed over 24 h in the living lens cortex after IR exposure. This study also demonstrated that the IR-induced fold increase in oxysterols was greater in the mouse lens cortex than the nucleus. Further work is required to elucidate the mechanistic link(s) between oxysterols and IR-induced cataract, but these data evidence for the first time that IR exposure of mice results in oxysterol formation in their eye lenses.

3.
Front Mol Neurosci ; 13: 570223, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132838

RESUMEN

A major goal in diseases is identifying a potential therapeutic agent that is cost-effective and can remedy some, if not all, disease symptoms. In Alzheimer's disease (AD), aggregation of hyperphosphorylated tau protein is one of the neuropathological hallmarks, and Tau pathology correlates better with cognitive impairments in AD patients than amyloid-ß load, supporting a key role of tau-related mechanisms. Selenium is a non-metallic trace element that is incorporated in the brain into selenoproteins. Chronic treatment with sodium selenate, a non-toxic selenium compound, was recently reported to rescue behavioral phenotypes in tau mouse models. Here, we focused on the effects of chronic selenate application on synaptic transmission and synaptic plasticity in THY-Tau22 mice, a transgenic animal model of tauopathies. Three months with a supplement of sodium selenate in the drinking water (12 µg/ml) restored not only impaired neurocognitive functions but also rescued long-term depression (LTD), a major form of synaptic plasticity. Furthermore, selenate reduced the inactive demethylated catalytic subunit of protein phosphatase 2A (PP2A) in THY-Tau22 without affecting total PP2A.Our study provides evidence that chronic dietary selenate rescues functional synaptic deficits of tauopathy and identifies activation of PP2A as the putative mechanism.

4.
Alzheimers Res Ther ; 12(1): 100, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32838792

RESUMEN

BACKGROUND: Intensive basic and preclinical research into Alzheimer's disease (AD) has yielded important new findings, but they could not yet been translated into effective therapies. One of the reasons is the lack of animal models that sufficiently reproduce the complexity of human AD and the response of human brain circuits to novel treatment approaches. As a step in overcoming these limitations, new App knock-in models have been developed that avoid transgenic APP overexpression and its associated side effects. These mice are proposed to serve as valuable models to examine Aß-related pathology in "preclinical AD." METHODS: Since AD as the most common form of dementia progresses into synaptic failure as a major cause of cognitive deficits, the detailed characterization of synaptic dysfunction in these new models is essential. Here, we addressed this by extracellular and whole-cell patch-clamp recordings in AppNL-G-F mice compared to AppNL animals which served as controls. RESULTS: We found a beginning synaptic impairment (LTP deficit) at 3-4 months in the prefrontal cortex of AppNL-G-F mice that is further aggravated and extended to the hippocampus at 6-8 months. Measurements of miniature EPSCs and IPSCs point to a marked increase in excitatory and inhibitory presynaptic activity, the latter accompanied by a moderate increase in postsynaptic inhibitory function. CONCLUSIONS: Our data reveal a marked impairment of primarily postsynaptic processes at the level of synaptic plasticity but the dominance of a presumably compensatory presynaptic upregulation at the level of elementary miniature synaptic function.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
Cereb Cortex ; 30(8): 4306-4324, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32147734

RESUMEN

Schizophrenia is associated with cognitive and behavioral dysfunctions thought to reflect imbalances in neurotransmission systems. Recent screenings suggested that lack of (functional) syndapin I (PACSIN1) may be linked to schizophrenia. We therefore studied syndapin I KO mice to address the suggested causal relationship to schizophrenia and to analyze associated molecular, cellular, and neurophysiological defects. Syndapin I knockout (KO) mice developed schizophrenia-related behaviors, such as hyperactivity, reduced anxiety, reduced response to social novelty, and an exaggerated novel object response and exhibited defects in dendritic arborization in the cortex. Neuromorphogenic deficits were also observed for a schizophrenia-associated syndapin I mutant in cultured neurons and coincided with a lack of syndapin I-mediated membrane recruitment of cytoskeletal effectors. Syndapin I KO furthermore caused glutamatergic hypofunctions. Syndapin I regulated both AMPAR and NMDAR availabilities at synapses during basal synaptic activity and during synaptic plasticity-particularly striking were a complete lack of long-term potentiation and defects in long-term depression in syndapin I KO mice. These synaptic plasticity defects coincided with alterations of postsynaptic actin dynamics, synaptic GluA1 clustering, and GluA1 mobility. Both GluA1 and GluA2 were not appropriately internalized. Summarized, syndapin I KO led to schizophrenia-like behavior, and our analyses uncovered associated molecular and cellular mechanisms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Esquizofrenia/metabolismo , Animales , Conducta Animal/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Front Aging Neurosci ; 11: 335, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866856

RESUMEN

Neurocognitive disorders, among which Alzheimer's disease (AD), have become one of the major causes of death in developed countries. No effective disease-modifying therapy is available, possibly because current treatments are administered too late to still be able to intervene in the disease progress. AD is characterized by a gradual onset with subclinical neurobiological and behavioral changes that precede diagnosis with years to even decades. The earlier the diagnosis, the earlier potential treatments can be tested and started. Mouse models are valuable to study the possible causes underlying early phases of neuropathology and their reflection in behavior and other biomarkers, to help improve preclinical detection and diagnosis of AD. Here, we assessed cognitive functioning and social behavior in transgenic mice expressing tau pathology only (Tau-P301L) or a combination of amyloid and tau pathology [amyloid precursor protein (APP)-V717I × Tau-P301L]. The mice were subjected to a variety of behavioral tasks at an age of 3-6 months, i.e., at an early phase of their AD-like pathology. We hypothesized that compared to age-matched wild-type controls, transgenic mice would show specific impairments in both cognitive and non-cognitive tasks. In line with our expectations, transgenic mice showed decreased cognitive flexibility in the Morris water maze, decreased exploratory behavior, decreased performance in a nesting task, and increased anxiety-like behavior. In accordance with the amyloid-cascade hypothesis, some of the behavioral measures showed more severe deficits in APP-V717I × Tau-P301L compared to Tau-P301L mice, indicating an exacerbation of disease processes due to the co-occurrence of amyloid and tau pathology. Our study supports the use of behavioral markers as early indicators of ongoing AD pathology during the preclinical phase.

7.
Acta Neuropathol Commun ; 7(1): 202, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31815648

RESUMEN

Many mouse models of Alzheimer's disease (AD) exhibit impairments in hippocampal long-term-potentiation (LTP), seemingly corroborating the strong correlation between synaptic loss and cognitive decline reported in human studies. In other AD mouse models LTP is unaffected, but other defects in synaptic plasticity may still be present. We recently reported that THY-Tau22 transgenic mice, that overexpress human Tau protein carrying P301S and G272 V mutations and show normal LTP upon high-frequency-stimulation (HFS), develop severe changes in NMDAR mediated long-term-depression (LTD), the physiological counterpart of LTP. In the present study, we focused on putative effects of AD-related pathologies on depotentiation (DP), another form of synaptic plasticity. Using a novel protocol to induce DP in the CA1-region, we found in 11-15 months old male THY-Tau22 and APPPS1-21 transgenic mice that DP was not deteriorated by Aß pathology while significantly compromised by Tau pathology. Our findings advocate DP as a complementary form of synaptic plasticity that may help in elucidating synaptic pathomechanisms associated with different types of dementia.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/genética , Proteínas tau/genética
8.
Sci Rep ; 9(1): 16363, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31705038

RESUMEN

Multiple animal models have been created to gain insight into Alzheimer's disease (AD) pathology. Among the most commonly used models are transgenic mice overexpressing human amyloid precursor protein (APP) with mutations linked to familial AD, resulting in the formation of amyloid ß plaques, one of the pathological hallmarks observed in AD patients. However, recent evidence suggests that the overexpression of APP by itself can confound some of the reported observations. Therefore, we investigated in the present study the AppNL-G-Fmodel, an App knock-in (App-KI) mouse model that develops amyloidosis in the absence of APP-overexpression. Our findings at the behavioral, electrophysiological, and histopathological level confirmed an age-dependent increase in Aß1-42 levels and plaque deposition in these mice in accordance with previous reports. This had apparently no consequences on cognitive performance in a visual discrimination (VD) task, which was largely unaffected in AppNL-G-F mice at the ages tested. Additionally, we investigated neurophysiological functioning of several brain areas by phase-amplitude coupling (PAC) analysis, a measure associated with adequate cognitive functioning, during the VD task (starting at 4.5 months) and the exploration of home environment (at 5 and 8 months of age). While we did not detect age-dependent changes in PAC during home environment exploration for both the wild-type and the AppNL-G-F mice, we did observe subtle changes in PAC in the wild-type mice that were not present in the AppNL-G-F mice.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Ondas Encefálicas/fisiología , Cognición/fisiología , Modelos Animales de Enfermedad , Neuronas/patología , Placa Amiloide/patología , Animales , Conducta Animal , Aprendizaje Discriminativo , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Placa Amiloide/metabolismo , Percepción Visual
9.
Aging Cell ; 18(3): e12932, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884121

RESUMEN

In the brain, insulin plays an important role in cognitive processes. During aging, these faculties decline, as does insulin signaling. The mechanism behind this last phenomenon is unclear. In recent studies, we reported that the mild and gradual loss of cholesterol in the synaptic fraction of hippocampal neurons during aging leads to a decrease in synaptic plasticity evoked by glutamate receptor activation and also by receptor tyrosine kinase (RTK) signaling. As insulin and insulin growth factor activity are dependent on tyrosine kinase receptors, we investigated whether the constitutive loss of brain cholesterol is also involved in the decay of insulin function with age. Using long-term depression (LTD) induced by application of insulin to hippocampal slices as a read-out, we found that the decline in insulin function during aging could be monitored as a progressive impairment of insulin-LTD. The application of a cholesterol inclusion complex, which donates cholesterol to the membrane and increases membrane cholesterol levels, rescued the insulin signaling deficit and insulin-LTD. In contrast, extraction of cholesterol from hippocampal neurons of adult mice produced the opposite effect. Furthermore, in vivo inhibition of Cyp46A1, an enzyme involved in brain cholesterol loss with age, improved insulin signaling. Fluorescence resonance energy transfer (FRET) experiments pointed to a change in receptor conformation by reduced membrane cholesterol, favoring ligand-independent autophosphorylation. Together, these results indicate that changes in membrane fluidity of brain cells during aging play a key role in the decay of synaptic plasticity and cognition that occurs at this late stage of life.


Asunto(s)
Envejecimiento/efectos de los fármacos , Anticuerpos/farmacología , Encéfalo/efectos de los fármacos , Colesterol/farmacología , Resistencia a la Insulina , Receptor de Insulina/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Células Cultivadas , Colesterol/análisis , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptor de Insulina/metabolismo
10.
Micromachines (Basel) ; 10(1)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658409

RESUMEN

In the quest for chronically reliable and bio-tolerable brain interfaces there has been a steady evolution towards the use of highly flexible, polymer-based electrode arrays. The reduced mechanical mismatch between implant and brain tissue has shown to reduce the evoked immune response, which in turn has a positive effect on signal stability and noise. Unfortunately, the low stiffness of the implants also has practical repercussions, making surgical insertion extremely difficult. In this work we explore the use of dextran as a coating material that temporarily stiffens the implant, preventing buckling during insertion. The mechanical properties of dextran coated neural probes are characterized, as well as the different parameters which influence the dissolution rate. Tuning parameters, such as coating thickness and molecular weight of the used dextran, allows customization of the stiffness and dissolution time to precisely match the user's needs. Finally, the immunological response to the coated electrodes was analyzed by performing a histological examination after four months of in vivo testing. The results indicated that a very limited amount of glial scar tissue was formed. Neurons have also infiltrated the area that was initially occupied by the dissolving dextran coating. There was no noticeable drop in neuron density around the site of implantation, confirming the suitability of the coating as a temporary aid during implantation of highly flexible polymer-based neural probes.

11.
Science ; 363(6423)2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30630900

RESUMEN

Amyloid-ß precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological function remains unresolved. Accumulating evidence suggests that APP has a synaptic function mediated by an unidentified receptor for secreted APP (sAPP). Here we show that the sAPP extension domain directly bound the sushi 1 domain specific to the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a). sAPP-GABABR1a binding suppressed synaptic transmission and enhanced short-term facilitation in mouse hippocampal synapses via inhibition of synaptic vesicle release. A 17-amino acid peptide corresponding to the GABABR1a binding region within APP suppressed in vivo spontaneous neuronal activity in the hippocampus of anesthetized Thy1-GCaMP6s mice. Our findings identify GABABR1a as a synaptic receptor for sAPP and reveal a physiological role for sAPP in regulating GABABR1a function to modulate synaptic transmission.


Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Plasticidad Neuronal , Receptores de GABA-A/fisiología , Transmisión Sináptica , Secuencia de Aminoácidos , Animales , Células Cultivadas , Células HEK293 , Hipocampo/fisiología , Humanos , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Péptidos , Unión Proteica , Dominios Proteicos , Proteómica , Sinapsis/fisiología , Vesículas Sinápticas/fisiología
12.
Neurobiol Dis ; 125: 14-22, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30665005

RESUMEN

Accumulation of hyper-phosphorylated and aggregated Tau proteins is a neuropathological hallmark of Alzheimer's Disease (AD) and Tauopathies. AD patient brains also exhibit insulin resistance. Whereas, under normal physiological conditions insulin signaling in the brain mediates plasticity and memory formation, it can also regulate peripheral energy homeostasis. Thus, in AD, brain insulin resistance affects both cognitive and metabolic changes described in these patients. While a role of Aß oligomers and APOE4 towards the development of brain insulin resistance emerged, contribution of Tau pathology has been largely overlooked. Our recent data demonstrated that one of the physiological function of Tau is to sustain brain insulin signaling. We postulated that under pathological conditions, hyper-phosphorylated/aggregated Tau is likely to lose this function and to favor the development of brain insulin resistance. This hypothesis was substantiated by observations from patient brains with pure Tauopathies. To address the potential link between Tau pathology and brain insulin resistance, we have evaluated the brain response to insulin in a transgenic mouse model of AD-like Tau pathology (THY-Tau22). Using electrophysiological and biochemical evaluations, we surprisingly observed that, at a time when Tau pathology and cognitive deficits are overt and obvious, the hippocampus of THY-Tau22 mice exhibits enhanced response to insulin. In addition, we demonstrated that the ability of i.c.v. insulin to promote body weight loss is enhanced in THY-Tau22 mice. In line with this, THY-Tau22 mice exhibited a lower body weight gain, hypoleptinemia and hypoinsulinemia and finally a metabolic resistance to high-fat diet. The present data highlight that the brain of transgenic Tau mice exhibit enhanced brain response to insulin. Whether these observations are ascribed to the development of Tau pathology, and therefore relevant to human Tauopathies, or unexpectedly results from the Tau transgene overexpression is debatable and discussed.


Asunto(s)
Encéfalo/metabolismo , Insulina/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas tau/genética
13.
Behav Brain Res ; 365: 222-230, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-29499284

RESUMEN

Mild traumatic brain injury (mTBI) can lead to diffuse neurophysical damage as well as cognitive and affective alterations. The nature and extent of behavioral changes after mTBI are still poorly understood and how strong an impact force has to be to cause long-term behavioral changes is not yet known. Here, we examined spatial learning acquisition, retention and reversal in a Morris water maze, and assessed search strategies during task performance after a single, mild, closed-skull traumatic impact referred to as "minimal" TBI. Additionally, we investigated changes in conditioned learning in a contextual fear-conditioning paradigm. Results show transient deficits in spatial memory retention, which, although limited, are indicative of deficits in long-term memory reconsolidation. Interestingly, minimal TBI causes animals to relapse to less effective search strategies, affecting performance after a retention pause. Apart from cognitive deficits, results yielded a sub-acute, transient increase in freezing response after fear conditioning, with no increase in baseline behavior, an indication of a stronger affective reaction to aversive stimuli after minimal TBI or greater susceptibility to stress. Furthermore, western blot analysis showed a short-term increase in hippocampal GFAP expression, most likely indicating astrogliosis, which is typically related to injuries of the central nervous system. Our findings provide evidence that even a very mild impact to the skull can have detectable consequences on the molecular, cognitive and affective-like level. However, these effects seemed to be very transient and reversible.


Asunto(s)
Conmoción Encefálica/fisiopatología , Memoria a Largo Plazo/fisiología , Memoria Espacial/fisiología , Animales , Conmoción Encefálica/complicaciones , Conmoción Encefálica/metabolismo , Lesiones Encefálicas/complicaciones , Trastornos del Conocimiento/etiología , Condicionamiento Clásico , Condicionamiento Psicológico , Modelos Animales de Enfermedad , Miedo/psicología , Femenino , Hipocampo , Masculino , Aprendizaje por Laberinto/fisiología , Memoria , Consolidación de la Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Aprendizaje Espacial/fisiología
14.
Neuroimage ; 188: 347-356, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553915

RESUMEN

Electrical stimulation of right Schaffer collateral in Trpm4-/- knockout and wild type rats were used to study the role of Trpm4 channels for signal processing in the hippocampal formation. Stimulation induced neuronal activity was simultaneously monitored in the CA1 region by in vivo extracellular field recordings and in the entire brain by BOLD fMRI measurements. In wild type and Trpm4-/- knockout rats, consecutive 5 Hz pulse trains elicited similar neuronal responses in the CA1 region and similar BOLD responses in the stimulated right hippocampus. Stimulus-related positive BOLD responses were also found in the left dorsal hippocampus. In contrast to the right dorsal hippocampus, baseline BOLD signals in the left hippocampus significantly decreased during consecutive stimulation trains. Similarly, slowly developing significant declines in baseline BOLD signals, in absence of any positive BOLD responses, were also observed in the right entorhinal, right piriform cortex, right basolateral amygdala and right dorsal striatum whereas baseline BOLD signals remained almost stable in the corresponding left regions. Furthermore, significant declines in baseline BOLD signals were found in the prefrontal cortex and prelimbic/infralimbic cortex. Because significant baseline BOLD declines were only observed in target regions of the right dorsal hippocampus, it might reflect functional connectivity between these regions. In all observed regions the decline in baseline BOLD signals was significantly delayed and less pronounced in Trpm4-/- knockout rats when compared to wild type rats. Thus, either Trpm4 channels are involved in mediating these baseline BOLD shifts or functional connectivity of the hippocampus is impaired in Trpm4-/- knockout rats.


Asunto(s)
Hipocampo/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Región CA1 Hipocampal/diagnóstico por imagen , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica , Electrocorticografía , Femenino , Lateralidad Funcional/fisiología , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Transgénicas
15.
iScience ; 9: 1-13, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30368077

RESUMEN

Although the brain accounts for only 2% of the total body mass, it consumes the most energy. Neuronal metabolism is tightly controlled, but it remains poorly understood how neurons meet their energy demands to sustain synaptic transmission. Here we provide evidence that AMP-activated protein kinase (AMPK) is pivotal to sustain neuronal energy levels upon synaptic activation by adapting the rate of glycolysis and mitochondrial respiration. Furthermore, this metabolic plasticity is required for the expression of immediate-early genes, synaptic plasticity, and memory formation. Important in this context, in neurodegenerative disorders such as Alzheimer disease, dysregulation of AMPK impairs the metabolic response to synaptic activation and processes that are central to neuronal plasticity. Altogether, our data provide proof of concept that AMPK is an essential player in the regulation of neuroenergetic metabolic plasticity induced in response to synaptic activation and that its deregulation might lead to cognitive impairments.

16.
Brain Struct Funct ; 223(8): 3557-3576, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29971514

RESUMEN

Hippocampal long-term potentiation (LTP) has been extensively studied as a cellular model of learning and memory. Recently, we described a central function of the Transient Receptor Potential M4 (TRPM4) channel in hippocampal LTP in mice in vitro. Here, we used Trpm4 knock-out (Trpm4-/-) rats to scrutinize TRPM4's role in the intact brain in vivo. After having confirmed the previous in vitro findings in mice, we studied hippocampal synaptic plasticity by chronic recordings in freely moving rats, hippocampus-dependent learning by a behavioral battery and hippocampal-cortical connectivity by fMRI. The electrophysiological investigation supports an involvement of TRPM4 in LTP depending on the induction protocol. Moreover, an exhaustive analysis of the LTP kinetics point to mechanistic changes in LTP by trpm4 deletion. General behavior as measured by open field test, light-dark box and elevated plus maze was inconspicuous in Trpm4-/- rats. However, they showed a distinct deficit in spatial working and reference memory associated to the Barnes maze and T-maze test, respectively. In contrast, performance of the Trpm4-/- in the Morris water maze was unaltered. Finally, fMRI investigation of the effects of a strong LTP induction manifested BOLD responses in the ipsilateral and contralateral hippocampus and the prefrontal cortex of both groups. Yet, the initial BOLD response in the stimulated hippocampal area of Trpm4-/- was significantly enhanced compared to WT rats. Our findings at the cellular, behavioral and system level point to a relevant role for TRPM4 in specific types of hippocampal synaptic plasticity and learning but not in hippocampal-prefrontal interaction.


Asunto(s)
Aprendizaje/fisiología , Potenciación a Largo Plazo , Canales Catiónicos TRPM/fisiología , Animales , Mapeo Encefálico , Potenciales Postsinápticos Excitadores , Técnicas de Inactivación de Genes , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/fisiología , Ratas , Canales Catiónicos TRPM/genética
17.
Neurobiol Dis ; 113: 82-96, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29427755

RESUMEN

Type 2 diabetes (T2DM) and obesity might increase the risk for AD by 2-fold. Different attempts to model the effect of diet-induced diabetes on AD pathology in transgenic animal models, resulted in opposite conclusions. Here, we used a novel knock-in mouse model for AD, which, differently from other models, does not overexpress any proteins. Long-term high fat diet treatment triggers a reduction in hippocampal N-acetyl-aspartate/myo-inositol metabolites ratio and impairs long term potentiation in hippocampal acute slices. Interestingly, these alterations do not correlate with changes in the core neuropathological features of AD, i.e. amyloidosis and Tau hyperphosphorylation. The data suggest that AD phenotypes associated with high fat diet treatment seen in other models for AD might be exacerbated because of the overexpressing systems used to study the effects of familial AD mutations. Our work supports the increasing insight that knock-in mice might be more relevant models to study the link between metabolic disorders and AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Enfermedad de Alzheimer/patología , Animales , Glucemia/metabolismo , Dieta Alta en Grasa/tendencias , Hipocampo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
18.
Brain Struct Funct ; 223(5): 2073-2095, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29372324

RESUMEN

Unilateral vision loss through monocular enucleation (ME) results in partial reallocation of visual cortical territory to another sense in adult mice. The functional recovery of the visual cortex occurs through a combination of spared-eye potentiation and cross-modal reactivation driven by whisker-related, somatosensory inputs. Brain region-specific intracortical inhibition was recently recognized as a crucial regulator of the cross-modal component, yet the contribution of specific inhibitory neuron subpopulations remains poorly understood. Somatostatin (SST)-interneurons are ideally located within the cortical circuit to modulate sensory integration. Here we demonstrate that optogenetic stimulation of visual cortex SST-interneurons prior to eye removal decreases ME-induced cross-modal recovery at the stimulation site. Our results suggest that SST-interneurons act as local hubs, which are able to control the influx and extent of cortical cross-modal inputs into the deprived cortex. These insights critically expand our understanding of SST-interneuron-specific regulation of cortical plasticity induced by sensory loss.


Asunto(s)
Ceguera/patología , Regulación de la Expresión Génica/fisiología , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Optogenética/métodos , Somatostatina/metabolismo , Corteza Visual/patología , Animales , Ceguera/metabolismo , Ceguera/cirugía , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Enucleación del Ojo , Femenino , Lateralidad Funcional , Masculino , Ratones , Ratones Transgénicos , Nervio Óptico/fisiología , Nervio Óptico/trasplante , Recuperación de la Función/fisiología , Privación Sensorial/fisiología , Somatostatina/genética , Vibrisas/inervación
19.
Sci Rep ; 7(1): 5157, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698637

RESUMEN

The hippocampus is important for spatial navigation, episodic memory and affective behaviour. Increasing evidence suggests that these multiple functions are accomplished by different segments along the dorsal-ventral (septal-temporal) axis. Long-term potentiation (LTP), the best-investigated cellular correlate of learning and memory, has distinct properties along this axis in the CA1 region, but so far, little is known about longitudinal differences in dentate gyrus (DG). Therefore, here we examined potential dorsoventral differences in DG-LTP using in vitro multi-electrode array recordings. In young mice, we found higher basal synaptic transmission in the dorsal DG, while the LTP magnitude markedly increased towards the ventral pole. Strikingly, these differences were greatly reduced in slices from middle-aged mice. Short-term plasticity, evaluated by paired-pulse ratios, was similar across groups. Recordings in the presence and absence of GABAA-receptor blocker picrotoxin suggested a higher inhibitory tone in the ventral DG of young mice, confirmed by an increased frequency of miniature inhibitory postsynaptic currents. Our findings support the view that the hippocampus contains discrete functional domains along its dorsoventral axis and demonstrate that these are subject to age-dependent changes. Since these characteristics are presumably conserved in the human hippocampus, our findings have important clinical implications for hippocampus- and age-related disorders.


Asunto(s)
Envejecimiento/fisiología , Giro Dentado/fisiología , Potenciación a Largo Plazo , Animales , Giro Dentado/efectos de los fármacos , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Picrotoxina/farmacología
20.
J Exp Med ; 214(8): 2257-2269, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28652303

RESUMEN

The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients.


Asunto(s)
Encéfalo/metabolismo , Resistencia a la Insulina , Proteínas tau/fisiología , Animales , Encéfalo/fisiología , Disfunción Cognitiva/etiología , Haplotipos , Hipocampo/fisiología , Humanos , Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA