Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(3): e0466722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36995244

RESUMEN

Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.


Asunto(s)
Microbiota , Streptococcus thermophilus , Animales , Ratones , Humanos , Streptococcus thermophilus/genética , Conjugación Genética , Tracto Gastrointestinal , Transferencia de Gen Horizontal
2.
Gut Microbes ; 15(1): 2172666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36801067

RESUMEN

Bacterial colonization in the gut plays a pivotal role in neonatal necrotizing enterocolitis (NEC) development, but the relationship between bacteria and NEC remains unclear. In this study, we aimed to elucidate whether bacterial butyrate end-fermentation metabolites participate in the development of NEC lesions and confirm the enteropathogenicity of Clostridium butyricum and Clostridium neonatale in NEC. First, we produced C.butyricum and C.neonatale strains impaired in butyrate production by genetically inactivating the hbd gene encoding ß-hydroxybutyryl-CoA dehydrogenase that produces end-fermentation metabolites. Second, we evaluated the enteropathogenicty of the hbd-knockout strains in a gnotobiotic quail model of NEC. The analyses showed that animals harboring these strains had significantly fewer and less intense intestinal lesions than those harboring the respective wild-type strains. In the absence of specific biological markers of NEC, the data provide original and new mechanistic insights into the disease pathophysiology, a necessary step for developing potential novel therapies.


Asunto(s)
Clostridium butyricum , Enterocolitis Necrotizante , Microbioma Gastrointestinal , Enfermedades del Recién Nacido , Recién Nacido , Humanos , Animales , Clostridium butyricum/genética , Enterocolitis Necrotizante/microbiología , Fermentación , Butiratos
3.
Microbiome ; 10(1): 135, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36002880

RESUMEN

BACKGROUND: Succinate is produced by both human cells and by gut bacteria and couples metabolism to inflammation as an extracellular signaling transducer. Circulating succinate is elevated in patients with obesity and type 2 diabetes and is linked to numerous complications, yet no studies have specifically addressed the contribution of gut microbiota to systemic succinate or explored the consequences of reducing intestinal succinate levels in this setting. RESULTS: Using germ-free and microbiota-depleted mouse models, we show that the gut microbiota is a significant source of circulating succinate, which is elevated in obesity. We also show in vivo that therapeutic treatments with selected bacteria diminish the levels of circulating succinate in obese mice. Specifically, we demonstrate that Odoribacter laneus is a promising probiotic based on its ability to deplete succinate and improve glucose tolerance and the inflammatory profile in two independent models of obesity (db/db mice and diet-induced obese mice). Mechanistically, this is partly mediated by the succinate receptor 1. Supporting these preclinical findings, we demonstrate an inverse correlation between plasma and fecal levels of succinate in a cohort of patients with severe obesity. We also show that plasma succinate, which is associated with several components of metabolic syndrome including waist circumference, triglycerides, and uric acid, among others, is a primary determinant of insulin sensitivity evaluated by the euglycemic-hyperinsulinemic clamp. CONCLUSIONS: Overall, our work uncovers O. laneus as a promising next-generation probiotic to deplete succinate and improve glucose tolerance and obesity-related inflammation. Video Abstract.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Animales , Bacteroidetes , Diabetes Mellitus Tipo 2/microbiología , Dieta Alta en Grasa , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Ácido Succínico
4.
Science ; 366(6464): 494-499, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31467190

RESUMEN

How the microbiota modulate immune functions remains poorly understood. Mucosal-associated invariant T (MAIT) cells are implicated in mucosal homeostasis and absent in germ-free mice. Here, we show that commensal bacteria govern murine MAIT intrathymic development, as MAIT cells did not recirculate to the thymus. MAIT development required RibD expression in bacteria, indicating that production of the MAIT antigen 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) was necessary. 5-OP-RU rapidly traveled from mucosal surfaces to the thymus, where it was captured by the major histocompatibility complex class Ib molecule MR1. This led to increased numbers of the earliest MAIT precursors and the expansion of more mature receptor-related, orphan receptor γt-positive MAIT cells. Thus, a microbiota-derived metabolite controls the development of mucosally targeted T cells in a process blurring the distinction between exogenous antigens and self-antigens.


Asunto(s)
Microbioma Gastrointestinal , Células T Invariantes Asociadas a Mucosa/citología , Membrana Mucosa/inmunología , Ribitol/análogos & derivados , Timo/citología , Uracilo/análogos & derivados , Animales , Escherichia coli , Proteínas de Escherichia coli , Vida Libre de Gérmenes , Antígenos de Histocompatibilidad Clase I/inmunología , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/inmunología , Nucleótido Desaminasas , Receptores de Antígenos de Linfocitos T/inmunología , Ribitol/inmunología , Organismos Libres de Patógenos Específicos , Bazo/citología , Deshidrogenasas del Alcohol de Azúcar , Simbiosis , Uracilo/inmunología
5.
Cell Metab ; 29(2): 362-382.e8, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30344015

RESUMEN

The circadian clock and associated feeding rhythms have a profound impact on metabolism and the gut microbiome. To what extent microbiota reciprocally affect daily rhythms of physiology in the host remains elusive. Here, we analyzed transcriptome and metabolome profiles of male and female germ-free mice. While mRNA expression of circadian clock genes revealed subtle changes in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated with rhythmic physiology. Strikingly, the absence of the microbiome attenuated liver sexual dimorphism and sex-specific rhythmicity. The resulting feminization of male and masculinization of female germ-free animals is likely caused by altered sexual development and growth hormone secretion, associated with differential activation of xenobiotic receptors. This defines a novel mechanism by which the microbiome regulates host metabolism.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Relojes Circadianos , Ghrelina/metabolismo , Intestinos/microbiología , Hígado/metabolismo , Transcriptoma , Animales , Ritmo Circadiano , Femenino , Microbioma Gastrointestinal , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...