Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635392

RESUMEN

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Asunto(s)
Proteínas Bacterianas , Corynebacterium glutamicum , Proteómica , Proteómica/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Ácidos Micólicos/metabolismo , Ácidos Micólicos/química , Espectrometría de Masas en Tándem , Cromatografía Liquida , Acilación , Química Clic
2.
ACS Chem Biol ; 18(7): 1548-1556, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306676

RESUMEN

Mycobacteria and other organisms in the order Mycobacteriales cause a range of significant human diseases, including tuberculosis, leprosy, diphtheria, Buruli ulcer, and non-tuberculous mycobacterial (NTM) disease. However, the intrinsic drug tolerance engendered by the mycobacterial cell envelope undermines conventional antibiotic treatment and contributes to acquired drug resistance. Motivated by the need to augment antibiotics with novel therapeutic approaches, we developed a strategy to specifically decorate mycobacterial cell surface glycans with antibody-recruiting molecules (ARMs), which flag bacteria for binding to human-endogenous antibodies that enhance macrophage effector functions. Mycobacterium-specific ARMs consisting of a trehalose targeting moiety and a dinitrophenyl hapten (Tre-DNPs) were synthesized and shown to specifically incorporate into outer-membrane glycolipids of Mycobacterium smegmatis via trehalose metabolism, enabling recruitment of anti-DNP antibodies to the mycobacterial cell surface. Phagocytosis of Tre-DNP-modified M. smegmatis by macrophages was significantly enhanced in the presence of anti-DNP antibodies, demonstrating proof-of-concept that our strategy can augment the host immune response. Because the metabolic pathways responsible for cell surface incorporation of Tre-DNPs are conserved in all Mycobacteriales organisms but absent from other bacteria and humans, the reported tools may be enlisted to interrogate host-pathogen interactions and develop immune-targeting strategies for diverse mycobacterial pathogens.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium , Tuberculosis , Humanos , Trehalosa , Mycobacterium smegmatis , Membrana Celular , Mycobacterium tuberculosis/química
3.
Angew Chem Int Ed Engl ; 62(2): e202213563, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36346622

RESUMEN

Increasing the speed, specificity, sensitivity, and accessibility of mycobacteria detection tools are important challenges for tuberculosis (TB) research and diagnosis. In this regard, previously reported fluorogenic trehalose analogues have shown potential, but their green-emitting dyes may limit sensitivity and applications in complex settings. Here, we describe a trehalose-based fluorogenic probe featuring a molecular rotor turn-on fluorophore with bright far-red emission (RMR-Tre). RMR-Tre, which exploits the unique biosynthetic enzymes and environment of the mycobacterial outer membrane to achieve fluorescence activation, enables fast, no-wash, low-background fluorescence detection of live mycobacteria. Aided by the red-shifted molecular rotor fluorophore, RMR-Tre exhibited up to a 100-fold enhancement in M. tuberculosis labeling compared to existing fluorogenic trehalose probes. We show that RMR-Tre reports on M. tuberculosis drug resistance in a facile assay, demonstrating its potential as a TB diagnostic tool.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Sondas Moleculares , Trehalosa , Colorantes Fluorescentes
4.
Chem Rev ; 122(3): 3336-3413, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34905344

RESUMEN

Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.


Asunto(s)
Glicoproteínas , Polisacáridos , Bacterias/metabolismo , Membrana Celular/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Polisacáridos/química
5.
Methods Mol Biol ; 2314: 385-398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235664

RESUMEN

The mycobacterial cell envelope includes a unique outer membrane, also known as the mycomembrane, which is the major defense barrier that confers intrinsic drug tolerance to Mycobacterium tuberculosis (Mtb) and related bacteria. The mycomembrane is typified by long-chain mycolic acids that are esterified to various acceptors, including: (1) trehalose, forming trehalose mono- and di-mycolate; (2) arabinogalactan, forming arabinogalactan-linked mycolates; and (3) in some species, protein serine residues, forming O-mycoloylated proteins. Synthetic trehalose and trehalose monomycolate analogs have been shown to specifically and metabolically incorporate into mycomembrane components, facilitating their analysis in native contexts and opening new avenues for the specific detection and therapeutic targeting of mycobacterial pathogens in complex settings. This chapter highlights trehalose-based probes that have been developed to date, briefly discusses their applications, and describes protocols for their use in mycobacteria research.


Asunto(s)
Citometría de Flujo/métodos , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/análisis , Trehalosa/química , Membrana Celular/química , Membrana Celular/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Imagen Molecular , Mycobacterium tuberculosis/crecimiento & desarrollo , Ácidos Micólicos/metabolismo
6.
J Am Chem Soc ; 142(17): 7725-7731, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32293873

RESUMEN

Mycobacteria have a distinctive glycolipid-rich outer membrane, the mycomembrane, which is a critical target for tuberculosis drug development. However, proteins that associate with the mycomembrane, or that are involved in its metabolism and host interactions, are not well-characterized. To facilitate the study of mycomembrane-related proteins, we developed photoactivatable trehalose monomycolate analogues that metabolically incorporate into the mycomembrane in live mycobacteria, enabling in vivo photo-cross-linking and click-chemistry-mediated analysis of mycolate-interacting proteins. When deployed in Mycobacterium smegmatis with quantitative proteomics, this strategy enriched over 100 proteins, including the mycomembrane porin (MspA), several proteins with known mycomembrane synthesis or remodeling functions (CmrA, MmpL3, Ag85, Tdmh), and numerous candidate mycolate-interacting proteins. Our approach is highly versatile, as it (i) enlists click chemistry for flexible protein functionalization; (ii) in principle can be applied to any mycobacterial species to identify endogenous bacterial proteins or host proteins that interact with mycolates; and (iii) can potentially be expanded to investigate protein interactions with other mycobacterial lipids. This tool is expected to help elucidate fundamental physiological and pathological processes related to the mycomembrane and may reveal novel diagnostic and therapeutic targets.


Asunto(s)
Química Clic/métodos , Glucolípidos/química , Mycobacterium/patogenicidad , Proteínas/metabolismo , Humanos
7.
J Org Chem ; 85(5): 3182-3191, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31939301

RESUMEN

Azide-modified inositol (InoAz) analogues are valuable as inhibitors and have shown promise as metabolic chemical reporters (MCRs) for labeling inositol-containing glycoconjugates in eukaryotic cells and potentially in mycobacteria, but the synthesis of enantiomerically pure InoAz analogues via traditional approaches is challenging. As a complementary route, here we investigated the application of the Ferrier carbocyclization reaction to the synthesis of enantiopure InoAz analogues starting from readily available azido glucosides. Using this approach combined with a para-methoxybenzyl protecting group strategy, 3-azido-3-deoxy- and 4-azido-4-deoxy-d-myo-inositol were efficiently synthesized. 5-Azido-5-deoxy-d-myo-inositol was inaccessible due to an unusual ß-elimination reaction, wherein the azide anion acted as the leaving group. The reported strategy is expected to facilitate continued development of synthetic InoAz analogues as inhibitors or MCRs of inositol-containing glycoconjugates in eukaryotic and mycobacterial systems.


Asunto(s)
Glicoconjugados , Inositol , Azidas , Glucósidos
8.
Angew Chem Int Ed Engl ; 59(43): 18943-18947, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33448568

RESUMEN

Efforts to synthesize degradable polymers from renewable resources are deterred by technical and economic challenges; especially, the conversion of natural building blocks into polymerizable monomers is inefficient, requiring multistep synthesis and chromatographic purification. Herein we report a chemoenzymatic process to address these challenges. An enzymatic reaction system was designed that allows for regioselective functional group transformation, efficiently converting glucose into a polymerizable monomer in quantitative yield, thus removing the need for chromatographic purification. With this key success, we further designed a continuous, three-step process, which enabled the synthesis of a sugar polymer, sugar poly(orthoester), directly from glucose in high yield (73 % from glucose). This work may provide a proof-of-concept in developing technically and economically viable approaches to address the many issues associated with current petroleum-based polymers.

9.
ACS Omega ; 4(2): 4348-4359, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30842987

RESUMEN

The mycobacterial outer membrane, or mycomembrane, is essential for the viability and virulence of Mycobacterium tuberculosis and related pathogens. The mycomembrane is a dynamic structure, whose chemical composition and biophysical properties can change during stress to give an advantage to the bacterium. However, the mechanisms that govern mycomembrane remodeling and their significance to mycobacterial pathogenesis are still not well characterized. Recent studies have shown that trehalose dimycolate (TDM), a major glycolipid of the mycomembrane, is broken down by the mycobacteria-specific enzyme TDM hydrolase (Tdmh) in response to nutrient deprivation, a process which appears to modulate the mycomembrane to increase nutrient acquisition, but at the expense of stress tolerance. Tdmh activity thus balances the growth of M. tuberculosis during infection in a manner that is contingent upon host immunity. Current methods to probe Tdmh activity are limited, impeding the development of inhibitors and the investigation of the role of Tdmh in bacterial growth and persistence. Here, we describe the synthesis and evaluation of FRET-TDM, which is a fluorescence-quenched analogue of TDM that is designed to fluoresce upon hydrolysis by Tdmh and potentially other trehalose ester-degrading hydrolases involved in mycomembrane remodeling. We found that FRET-TDM was efficiently activated in vitro by recombinant Tdmh, generating a 100-fold increase in fluorescence. FRET-TDM was also efficiently activated in the presence of whole cells of Mycobacterium smegmatis and M. tuberculosis, but the observed signal was predominantly Tdmh-independent, suggesting that physiological levels of Tdmh are low and that other mycobacterial enzymes also hydrolyze the probe. The latter notion was confirmed by employing a native protein gel-based fluorescence assay to profile FRET-TDM-activating enzymes from M. smegmatis lysates. On the other hand, FRET-TDM was capable of detecting the activity of Tdmh in cells when it was overexpressed. Together, our data demonstrate that FRET-TDM is a convenient and sensitive in vitro probe of Tdmh activity, which will be beneficial for Tdmh enzymatic characterization and inhibitor screening. In more complex samples, for example, live cells or cell lysates, FRET-TDM can serve as a tool to probe Tdmh activity at elevated enzyme levels, and it may facilitate the identification and characterization of related hydrolases that are involved in mycomembrane remodeling. Our study also provides insights as to how the structure of FRET-TDM or related fluorogenic probes can be optimized to achieve improved specificity and sensitivity for detecting mycobacteria.

10.
Chembiochem ; 20(10): 1282-1291, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30589191

RESUMEN

Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)-catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne-modified TMM analogue (O-AlkTMM-C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM-based reporters bearing alkyne, azide, trans-cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one- or two-step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell-surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole-cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.


Asunto(s)
Membrana Celular/química , Factores Cordón/química , Corynebacterium/química , Aciltransferasas/metabolismo , Alquinos/síntesis química , Alquinos/química , Alquinos/metabolismo , Azidas/síntesis química , Azidas/química , Azidas/metabolismo , Bacillus subtilis/química , Ingeniería Celular/métodos , Membrana Celular/metabolismo , Química Clic , Factores Cordón/síntesis química , Factores Cordón/metabolismo , Escherichia coli/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Estructura Molecular , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...