Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Wellcome Open Res ; 8: 178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600585

RESUMEN

Background: Malawi's National Malaria Control Programme (NMCP) is developing a new strategic plan for 2023-2030 to combat malaria and recognizes that a blanket approach to malaria interventions is no longer feasible. To inform this new strategy, the NMCP set up a task force comprising 18 members from various sectors, which convened a meeting to stratify the malaria burden in Malawi and recommend interventions for each stratum. Methods: The burden stratification workshop took place from November 29 to December 2, 2022, in Blantyre, Malawi, and collated essential data on malaria burden indicators, such as incidence, prevalence, and mortality. Workshop participants reviewed the malaria burden and intervention coverage data to describe the current status and identified the districts as a appropriate administrative level for stratification and action. Two scenarios were developed for the stratification, based on composites of three variables. Scenario 1 included incidence, prevalence, and under-five all-cause mortality, while Scenario 2 included total malaria cases, prevalence, and under-five all-cause mortality counts. The task force developed four burden strata (highest, high, moderate, and low) for each scenario, resulting in a final list of districts assigned to each stratum. Results: The task force concluded with 10 districts in the highest-burden stratum (Nkhotakota, Salima, Mchinji, Dowa, Ntchisi, Mwanza, Likoma, Lilongwe, Kasungu and Mangochi) 11 districts in the high burden stratum (Chitipa, Rumphi, Nkhata Bay, Dedza, Ntcheu, Neno, Thyolo, Nsanje, Zomba, Mzimba and Mulanje) and seven districts in the moderate burden stratum (Karonga, Chikwawa, Balaka, Machinga, Phalombe, Blantyre, and Chiradzulu). There were no districts in the low-burden stratum. Conclusion: The next steps for the NMCP are to review context-specific issues driving malaria transmission and recommend interventions for each stratum. Overall, this burden stratification workshop provides a critical foundation for developing a successful malaria strategic plan for Malawi.

2.
Virus Evol ; 9(1): vead030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305707

RESUMEN

G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, 5 years after the introduction of the Rotarix rotavirus vaccine. Here, we analysed representative twenty-seven whole genome sequences (G3P[4], n = 20; G3P[6], n = 1; and G3P[8], n = 6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each ribonucleic acid (RNA) segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1, and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease-burden settings to inform disease prevention and control.

3.
Wellcome Open Res ; 8: 264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38756913

RESUMEN

Background: Malaria remains a public health problem in Malawi and has a serious socio-economic impact on the population. In the past two decades, available malaria control measures have been substantially scaled up, such as insecticide-treated bed nets, artemisinin-based combination therapies, and, more recently, the introduction of the malaria vaccine, the RTS,S/AS01. In this paper, we describe the epidemiology of malaria for the last two decades to understand the past transmission and set the scene for the elimination agenda. Methods: A collation of parasite prevalence surveys conducted between the years 2000 and 2022 was done. A spatio-temporal geostatistical model was fitted to predict the yearly malaria risk for children aged 2-10 years (PfPR 2-10) at 1×1 km spatial resolutions. Parameter estimation was done using the Monte Carlo maximum likelihood method. District-level prevalence estimates adjusted for population are calculated for the years 2000 to 2022. Results: A total of 2,595 sampled unique locations from 2000 to 2022 were identified through the data collation exercise. This represents 70,565 individuals that were sampled in the period. In general, the PfPR2_10 declined over the 22 years. The mean modelled national PfPR2_10 in 2000 was 43.93 % (95% CI:17.9 to 73.8%) and declined to 19.2% (95%CI 7.49 to 37.0%) in 2022. The smoothened estimates of PfPR2_10 indicate that malaria prevalence is very heterogeneous with hotspot areas concentrated on the southern shores of Lake Malawi and the country's central region. Conclusions: The last two decades are associated with a decline in malaria prevalence, highly likely associated with the scale-up of control interventions. The country should move towards targeted malaria control approaches informed by surveillance data.


In Malawi, malaria continues to be a significant health issue, affecting people's well-being and the economy. Over the past twenty years, efforts to control malaria, such as using bed nets, specific medications, and introducing a malaria vaccine, have increased substantially. This paper explores malaria transmission patterns during this time to better understand the past situation and prepare for future efforts to eliminate the disease. We collected and analyzed data from various surveys conducted between 2000 and 2022, focusing on malaria risk for children aged 2­10 years. We used a detailed statistical model to predict yearly malaria risk. The results show a decline in malaria prevalence over the 22 years. The analysis also reveals variations in malaria prevalence, with hotspot areas particularly concentrated in the southern shores of Lake Malawi and the country's central region. This decline in malaria prevalence is likely linked to the increased implementation of control measures. The findings emphasize the importance of targeted approaches informed by ongoing surveillance data for continued progress in malaria control.

4.
Malar J ; 18(1): 411, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818297

RESUMEN

Malawi is midway through its current Malaria Strategic Plan 2017-2022, which aims to reduce malaria incidence and deaths by at least 50% by 2022. Malariometric data are available with health surveillance data housed in District Health Information Software 2 (DHIS2) and household survey data from two recent Malaria Indicator Surveys (MIS) and a Demographic and Health Survey (DHS). Strengths and weaknesses of the data were discussed during a consultative meeting in Lilongwe, Malawi in July 2019. The first 3 days included in-depth exploration and analysis of surveillance and survey data by 13 participants from the National Malaria Control Programme, district health offices, and partner organizations. Key indicators derived from both DHIS2 and MIS/DHS sources were analysed with three case studies, and presented to stakeholders on the fourth day of the meeting. Applications of the findings to programmatic decision-making and strategic plan evaluation were critiqued and discussed.


Asunto(s)
Exactitud de los Datos , Demografía/estadística & datos numéricos , Composición Familiar , Instituciones de Salud/estadística & datos numéricos , Malaria/prevención & control , Adolescente , Adulto , Estudios de Casos y Controles , Preescolar , Congresos como Asunto , Consultores , Femenino , Humanos , Malaria/transmisión , Malaui , Persona de Mediana Edad , Embarazo , Evaluación de Programas y Proyectos de Salud , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...